Science of the Total Environment 785 (2021) 147238

Contents lists available at ScienceDirect

Science o«
Total Environment

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Using demand mapping to assess the benefits of urban green and blue )
space in cities from four continents et

David H. Fletcher **, Patrick J. Likongwe ”, Sosten S. Chiotha ¢, Gilbert Nduwayezu ¢, Dwijen Mallick ¢,

Nasir Uddin Md. ¢, Atiq Rahman ¢, Polina Golovatina-Mora f Laura Lotero®, Stephanie Bricker h ‘
Mathews Tsirizeni , Alice Fitch ¢, Marios Panagi', Cristina Ruiz Villena', Christian Arnhardt h Joshua Vande Hey,
Richard Gornall', Laurence Jones *

2 UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK

b AFRICITY project manager and PhD Scholar, Environmental Science (Urban Ecosystem Services), LEAD, P/Bag 07, Zomba, Malawi
© LEAD Southern and Eastern Africa, Mulunguzi, Fishing Flies Road, Zomba, Malawi

4 School of Engineering, College of Science and Technology, University of Rwanda, Kigali, Rwanda

¢ Bangladesh Centre for Advanced Studies (BCAS), House 10, Road 16A, Gulshan-1, Dhaka 1212, Bangladesh

f Faculty of Social Communication-Journalism, Universidad Pontificia Bolivariana, Medellin, Colombia

& Facultad de Ingenieria Industrial, Universidad Pontificia Bolivariana, Medellin, Colombia

M British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK

! University of Leicester, University Road, Leicester LE1 7RH, UK

HIGHLIGHTS GRAPHICAL ABSTRACT
» Urban footprint is better for defining - S
greenspace than administrative bound- Dema n d ma p pl n g Heafssu,, = PM
. fi 2.5
aries.

Pressure, exposure and vulnerability
combine to reveal demand for green so-
lutions.

Spatial patterns of weighted-demand do
not always match patterns of pressures.
Spatial context and social factors are
critical for planning nature-based

solutions.
ARTICLE INFO ABSTRACT
Article history: The benefits of urban green and blue infrastructure (UGI) are widely discussed, but rarely take into account local
Received 13 November 2020 conditions or contexts. Although assessments increasingly consider the demand for the ecosystem services that
Received in revised form 12 April 2021 UGI provides, they tend to only map the spatial pattern of pressures such as heat, or air pollution, and lack a wider

Accepted 13 April 2021

- } . understanding of where the beneficiaries are located and who will benefit most. We assess UGl in five cities from
Available online 23 April 2021

four continents with contrasting climate, socio-political context, and size. For three example services (air pollu-
Editor: Elena Paoletti tion removal, heat mitigation, accessible greenspace), we run an assessment that takes into account spatial pat-
terns in the socio-economic demand for ecosystem services and develops metrics that reflect local context,
drawing on the principles of vulnerability assessment. Despite similar overall levels of UGI (from 35 to 50% of
Keywords: urban footprint), the amount of service provided differs substantially between cities. Aggregate cooling ranged
Urban green and blue space from 0.44 °C (Leicester) to 0.98 °C (Medellin), while pollution removal ranged from 488 kg PM, s/yr (Zomba)
Natural capital

* Corresponding author.
E-mail address: dfletcher@ceh.ac.uk (D.H. Fletcher).

https://doi.org/10.1016/j.scitotenv.2021.147238
0048-9697/© 2021 Elsevier B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2021.147238&domain=pdf
https://doi.org/10.1016/j.scitotenv.2021.147238
mailto:dfletcher@ceh.ac.uk
https://doi.org/10.1016/j.scitotenv.2021.147238
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv

D.H. Fletcher, PJ. Likongwe, S.S. Chiotha et al.

Ecosystem services
Urban planning
Nature-based solutions (NBS)

Science of the Total Environment 785 (2021) 147238

to 48,400 kg PM, s/yr (Dhaka). Percentage population with access to nearby greenspace ranged from 82%
(Dhaka) to 100% (Zomba). The spatial patterns of pressure, of ecosystem service, and of maximum benefit within
a city do not necessarily match, and this has implications for planning optimum locations for UGI in cities.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Approximately half of the world population currently live in cities,
with this proportion projected to reach 60% by 2030 (Montgomery,
2007). As the urban fabric struggles to accommodate this influx,
towns and cities expand and/or densify. By-products of these increases
in urban population are increased air, water and noise pollution (e.g.
from traffic, domestic waste and industry), increased anthropogenic
heat outputs, as well as increased absorption of solar radiation and de-
creased emission of longwave energy (i.e. Urban Heat Island, UHI, ef-
fects - Mirzaei, 2015). With space at a premium, urban green and blue
space, also termed urban green and blue infrastructure (UGI), typically
makes way for man-made infrastructure, such as buildings and trans-
port networks (e.g. through densification processes; Haaland and van
Den Bosch, 2015). In turn, this reduction in UGI undermines the urban
system's ability to regulate pressures such as heat, noise, air pollution
and flooding (Foley et al., 2005; Derkzen et al., 2015), compounding
the effects of urbanisation. Impacts of these pressures at an individual
level often lead directly to poor health and declines in well-being.

The direct and indirect effects of these pressures on people are var-
ied. PM, 5 is the most damaging component of urban air pollution,
with elevated PM, 5 concentrations associated with negative health im-
pacts such as premature death, lung cancer, pulmonary inflammation,
altered cardiac function, and acute stroke mortality (Hong et al., 2002;
Pope et al., 2002; Pope et al,, 2004). High temperatures can place signif-
icant stress on the human body, with extremes leading to heat syncope,
cardiovascular stress, thermal exhaustion or heat stroke (Kleerekoper
etal, 2012). The severity of these conditions range from discomfort, im-
pairment of physical and cognitive functions, to increases in morbidity
and mortality rates. High temperatures in urban areas, in combination
with air pollution, can also lead to increased ground-level ozone,
which can have an antagonistic effect on cardio-respiratory conditions
(WHO, 2004). Increased incidence of psychosis and clinical depression,
and decreased life satisfaction have all been connected to high levels of
urbanisation, high population density and low levels of local-area urban
green space (Sundquist et al., 2004; Chen et al., 2015; Cox et al., 2018;
Houlden et al., 2018).

The United Nations Sustainable Development Goals (SDGs) include
an emphasis on the importance of inclusive, accessible, multi-
functional green spaces in urban settings, to provide a variety of bene-
fits, including health and well-being to residents, especially target 11.7
of the UN Sustainable Development Goals (UN, 2017). UGI can have a
significant cooling effect (Bowler et al., 2010; Manteghi et al., 2015;
Reis and Lopes, 2019), and vegetation removes particulate matter
from the air column (Bealey et al., 2007; Chen et al., 2019). Exercise,
or other physical activity in green or natural surroundings provides
both short-term and long-term positive health outcomes (Barton and
Pretty, 2010) and a number of studies have found links between avail-
ability of green spaces, the amount of exercise people take and physical
health (e.g. Japan - Takano et al., 2002; Canada - Villeneuve et al., 2012).
Many recent studies have identified associations between mental well-
being and access/proximity to green space (e.g. Houlden et al., 2019).
However, access to UG, and the associated benefits, is often influenced
by socio-economic status (e.g. Jenerette et al., 2011; Rutt and Gulsrud,
2016).

People in lower income neighbourhoods are typically at higher risk
of exposure to, and lack the means to respond or adapt to, a number
of these urbanisation-related pressures (Rosenthal, 2010; Pearce,

2013; Macintyre et al., 2018). For example, Neidell (2004) observed
both greater exposure and greater effects of air pollution on asthmatic
children of lower socio-economic status (SES) in California, USA (the au-
thors cite affordability of living in areas with cleaner air as an impedi-
ment to lower SES families responding to/avoiding higher exposure).
Children are particularly vulnerable and their exposure to these pres-
sures can result in life-long impacts (Salthammer et al., 2016), not
only in terms of health and well-being (Gauderman et al., 2005;
McConnell et al., 2010), but also in terms of socio-economic mobility
(Wargocki and Wyon, 2007). Additionally, differences in all-cause or
selected-cause mortality have not been shown to be associated with ex-
tent of green space at the city-scale e.g. in the US (Richardson et al.,
2012) and England (Bixby et al., 2015). This is critical because it sug-
gests risks/benefits are highly localised, with likely implications for
health inequalities. These concepts are fundamental to the emerg-
ing understanding of environmental justice in an urban context
(Langemeyer and Connolly, 2020).

To date, studies of the ecosystem services (ES) provided by UGl in re-
lation to health and well-being are typically focused on low to medium
population density, wealthy countries in North America, Europe and
Asia, with relatively few in what is commonly referred to as the “Global
South” (see Dados and Connell, 2012), i.e., predominantly low-income
countries of South America, the Middle East and Africa (Gupta et al.,
2016; Cruz-Garcia et al., 2017). As these low-income countries are pre-
dicted to be at the centre of projected future growth and urbanisation
(Szabo, 2018), they should be the focus of research tackling the negative
impacts of urbanisation and the associated inequality issues.

The majority of studies which attempt to map demand for ecosys-
tem services pick easy metrics, which focus almost exclusively on map-
ping the pressure (Baré et al.,, 2015; Luederitz et al., 2015). They fail to
take account of the location of the beneficiaries, and which beneficiaries
are likely to benefit the most from service provision. An assessment
which aims to tackle inequity issues needs to map and assess those sec-
tors of the population who will benefit most from the ecosystem ser-
vices that UGI provides, in combination with where the pressures are
greatest and where the maximum ecosystem service can be delivered.
These three dimensions are unlikely to be maximised in the same place.

In this study, we look at five cities across the world with a diversity
of geographical, socio-political, climatic and economic contexts. Since
there are relatively few Urban ES assessments in the Global South, we
focus our assessments on four cities in this region, with a single city in
the UK, Europe, for contrast (using the same methods). The aims of
this study were firstly to demonstrate, using freely available open data
sources, a means to identify and map urban green and blue space within
a functional definition of urban footprint. We hypothesised that there
would be variation in the congruence between the urban footprints
and the administrational boundaries of the cities. Using the urban foot-
print as the basis of spatial analysis, and drawing on the principles of
vulnerability assessment, we then aimed to answer the following
questions: i) how do ES supply and socio-economic demand vary spa-
tially within the study cities? and ii) what are the implications for calcu-
lating the health-related benefits from UGI in a way that is context-
dependent? We select three important ecosystem services to illustrate
this demand-focused approach: air pollution removal by woodland,
heat mitigation, and accessible greenspace as a proxy for physical and
mental wellbeing benefits. These represent important services in an
urban context, with strong links to human health, especially in a global
context (WHO, 2018). Lastly, we compare and draw out commonalities
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across the cities. We hypothesised that the quantities of services pro-
vided would not be a simple function of extent/quantity of UGI; spatial
context also being a factor. Further, we predicted that the highest de-
mand for mitigation would not always be at locations where the pres-
sures are greatest.

2. Methods

The five case study cities are shown in Fig. 1: Dhaka City is a mega-
city in Bangladesh, on the Ganges river delta, with population of
19,578,000, and extensive low-lying land with a relatively large area
of water bodies. The two cities in Africa are somewhat smaller; Kigali
in Rwanda has population of 1,058,000 and Zomba in Malawi a popula-
tion of 105,000. Medellin is a relatively high altitude city in Colombia,
with a population of 3,934,000 and very little blue space. Lastly, Leicester
in the UK has a population of 354,000 and is part of a larger conurbation
of urban areas in East Midlands of England. The cities are described in
more detail in Appendix I.

2.1. Land cover classification

We used a number of Spectral Indices as the basis for an enhanced
land cover classification to identify urban green and blue space:
Normalised Difference Vegetation Index (NDVI), Normalised Difference
Built-up Index (NDBI), Normalised Difference Water Index (NDWI) and
Urban Index (UI). These indices were calculated from cloud-free
Sentinel-2a data (see Table S1, in Supplementary material for details)
at a spatial resolution of =10 m (resampling to 10 m, where necessary).
While NDVI alone is not always a good discriminant of different vegeta-
tion types, e.g. trees and grass, other spectral indices can be (e.g. NDWI,
Szabo et al,, 2016), and when multiple indices are combined, broad land

‘Medellin

Leicester
L
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cover classes, such as built up land, roads, grass and trees can be isolated
(Duan et al., 2019).

We used unsupervised k-means clustering (kmc) to classify land
cover into 10 classes, which were then assigned to one of four broad cat-
egories of urban land cover (after Jones et al., 2019), ‘Built environment’,
‘High green’ (woody, intensive vegetation, i.e. woodland), ‘Low green’
(non-woody, extensive vegetation, i.e. grass), ‘Blue space’ (water),
using the True Colour Image (Sentinel-2a, TCI) for reference. Road net-
works and water bodies, including rivers, were extracted from Open
Street Map (OSM), then used to update the classified raster dataset, in
case any of these features were not detected in the satellite data.

2.2. Urban footprint

Accurate urban extents are difficult to derive from administrative
definitions (Balk et al., 2004). Many studies relating to urban ES use ad-
ministrative boundaries to delimit the study area. However, these types
of boundaries are of limited suitability for the purpose of assessing
urban green and blue space. They are often not representative of the
shape or size of the actual urbanised area, and they typically include
large areas of woodland, grassland or cropland, which lie outside the
urban area and are not part of the urban fabric. To undertake an objec-
tive quantitative assessment of urban green and blue space, we used a
data-driven approach, based on the morphology of the urban fabric to
define the urban footprint of our five case study cities.

We first used ‘focal statistics’, calculating a mean value within a
(100 m x 100 m) neighbourhood region, applied to the ‘Built environ-
ment’ land cover class. We reclassified values of 0.15 and above as
Urban. These urban areas were converted from raster into vector data
- this threshold was chosen after sensitivity testing, using the TCI band
as a reference. In order to identify and ‘capture’ green and blue space

Dhaka
o

® Case Study Cities Location
Country Boundary

2,500 5,000

Fig. 1. Locations of the five Case study cities.
Images from Google Earth (31 March 2020).
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lying within the urban footprint we applied the variable positive-buffer
and negative-buffer technique of Jones et al. (2019), to simplify the ge-
ometry of these polygons, selecting only polygons with an area greater
than 1 km? and retaining only the geometry defining the overall perim-
eter of each polygon. The resulting urban footprint included all areas of
green and blue space within the urban morphology and was used as the
study extent for all further analyses.

2.3. Area calculations of land cover classes

Areas (km?) of our land cover classes were calculated using polygon
representations of the raster land cover dataset. Road networks, ex-
tracted from OSM, were used as an erase feature in order to delimit
land cover parcels prior to the area calculations of green and blue
space. We also created a combined ‘Green space’ category to aid inter-
pretation, by merging the two vegetation classes using the dissolve
function.

2.4. Data on pressures

In this study, we looked at two key urbanisation-related pres-
sures (heat pressure and PM; 5 pollution), with major health impacts
(Jayasooriya et al., 2017; WHO, 2018) using the following data: To
estimate land surface temperature, we used Landsat satellite obser-
vations downloaded from USGS hub (https://earthexplorer.usgs.
gov/). We used Landsat 8 OLI/TIRS C1 L1 data and selected only imag-
ery that had less than 10% cloud coverage. We analysed an 8-day
composite from the hottest month of the year (2018) in Google
Earth Engine (GEE) platform. First, we resampled all spectral bands
into 30 m resolution, then, calculated land surface temperature
after Sobrino et al. (2004):

i ABT
LST(C)fl—s—()\—s—T/p)lns (1)
where ABT is the atmosphere brightness temperature, A is a wave-
length and p = hc / k (1.438 x 1072 mK), where h is Planck's con-
stant (6.626 x 10734 ]/S), c is a velocity of light, k is Boltzman's
constant (1.38 x 10723 J/K), and ¢ is a surface emissivity (¢ =
0.004 = Pv + 0.989) - in which Pv is the proportion of vegetation de-
rived from maximum and minimum NDVI values.

For PM, 5 we used the most up-to-date global dataset available at a
suitably high resolution, 2016 PM, 5 concentrations from MODIS, MISR
and SeaWiFS Aerosol Optical Depth (AOD) with GWR (van Donkelaar
etal, 2018).

2.5. Socio-economic data

The gridded population data for all five cities (people per pixel) are
produced using a dasymetric modelling approach, using a Random
Forest estimation technique to redistribute population count data, de-
scribed in Stevens et al. (2015). Data for 2015 were used for all cities, ex-
cept Leicester (2011). The data for Leicester was at a spatial resolution of
10 m, whereas data for other cities were at approximately 100 m (3 arc-
seconds).

The gridded poverty data for Dhaka and Zomba (30 arc-second
resolution) are created using Bayesian model-based geo-statistics
in combination with high resolution gridded spatial covariates,
applied to 2011 geo-located household survey data (Demographic
and Health Survey, and Living Standards Measurement Study, re-
spectively). The poverty indicator metric for Dhaka is likelihood of
living in poverty (less than $2.50 per day) and the indicator for
Zomba is the proportion of residents living in poverty (less than
$2 per day). Poverty data for the other three cities were not avail-
able in gridded format, so figures are given at city district level
(lower layer super output area, in the case of Leicester). The poverty
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indicator data for Kigali is the proportion of the population in pov-
erty (less than 159,375 RWF per year), in 20013-14. For Medellin,
the data are mean monthly income (2018), per city district. The in-
come data were rescaled from zero to one and then inverted (i.e. 1
minus rescaled data), to represent prevalence of poverty. For
Leicester, the poverty indicator used is the Index of Multiple
Deprivation.

2.6. Quantification of ecosystem services (ES) provided by urban green and
blue space

Air pollution removed (PM;5) by UGI was calculated using
methods derived by re-analysis of data from Jones et al. (2017,
2019). A meta-model was created in the form of two regression
equations to calculate quantity of PM; 5 pollution removed by wood-
land, and the resulting change in PM, 5 concentration. For the first
equation, analysis showed that pollution removal was linearly re-
lated to amount of woodland, but efficiency varied according to
PM, s concentration. Therefore, we simplified the response variable
to pollution removed per hectare of woodland, resulting in the fol-
lowing equation in which PM, 5 concentration is the only predictor
variable. This calculation can be used to calculate PM, 5 removal
rate of any sized area of woodland:

PM_removal_rate = 1.1664 « PM_conc + 0.4837 (2)

where PM_removal_rate is quantity of PM, 5 removed per unit area of
woodland per year (kg ha=! yr=!), and PM_conc is the concentration
of PM, 5 (ug/ m?).

The second equation calculates the change in PM, 5 concentration
that occurs as a result of pollution removal through dry deposition
processes, and is a function of the proportion of woodland in an
area, the initial concentration of PM, 5, and an interaction term be-
tween those two factors. Since a realistic change in pollutant concen-
tration can only be achieved with vegetation over a large area, this
equation is designed to be used at a city scale using average PM con-
centration and overall proportion of woodland. Taking account of
spatial location of beneficiaries and pollutant exposure within a
city could be achieved by calculating a population-weighted average
PM, 5 concentration as an input to the equation. In this example, we
used a city average PM, 5 concentration, and percentage of woodland
across each city.

Change_PM_conc = —0.0318 =« PM_conc—0.1112 =
Log10WoodPC—0.054 + PMxLogWood + 0.0832
3)

where Change_PM_conc is the change in PM, 5 concentration (ug/ m>),
PM_conc is the initial PM, 5 concentration (ug/ m>), Log10WoodPC is
the Log10 of the percentage of woodland (percentage +1%, to avoid
very low values) in the relevant area, and PMxLogWood is PM_conc mul-
tiplied by Log10WoodPC.

We used our “high green” land cover classification to represent
woodland, and PM, 5 concentrations (spatial mean within the urban
footprint) were taken from the global dataset (van Donkelaar et al.,
2018), with a spatial resolution of 0.01 decimal degrees (approx. 1 km
at the equator).

Cooling effects were estimated by applying the methods of eftec
(2017), calculating relative coverage of each land cover type, multiply-
ing by the respective land cover cooling coefficients and then summing
all three values. We adjusted our cooling coefficients for high green land
cover, proportionately, to mirror the climate effects observed by
Morakinyo et al. (2017), assigning Dhaka and Zomba as ‘hot humid’ cli-
mate type, Kigali and Medellin as ‘warm humid’ climate type, and
Leicester as ‘temperate’ climate type.


https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/

D.H. Fletcher, PJ. Likongwe, S.S. Chiotha et al.

Due to the growing body of evidence supporting the positive rela-
tionship between access to green space and physical and mental health
and well-being (H&W), we used ‘access to green space’ as a surrogate
measure for the H&W benefit of urban green space. A number of metrics
are used to quantify access to public spaces (e.g. Natural England, 2010;
Wolchetal.,, 2011; Dadvand et al., 2012; Amoly et al., 2014; Bertram and
Rehdanz, 2015; WHO, 2016). We used the indicator adopted by WHO
which quantifies the population within a defined region living within
300 m radius (straight-line distance) of an open space of minimum
size 0.5 ha (WHO, 2016). In our study, we applied a 300 m buffer to
merged green space polygons with final minimum areas of 0.5 ha,
counting the number of people within that buffer. Population data
was derived from population distribution grids (see Table S2 in
Supplementary material for details).

2.7. Mapping weighted demand, reflecting socio-economic context

The conceptual approach for calculating demand is shown in Fig. 2
and represents the principles that: more people equals greater impact,
higher prevalence of poverty equals greater impact, and higher pressure
equals greater impact. This draws on Vulnerability assessment, where
the population (number of people in an area) is equivalent to exposure,
and social factors such as poverty or age bracket represent sensitivity.
Adaptive capacity is not represented in this context since that should
cover both social and environmental adaptation. Therefore, weighted
demand was calculated by multiplying rescaled population and poverty
data by the rescaled pressure data, to give an equally-weighted output.
In the scaling procedure, PM; 5 and heat pressure data were rescaled
(i.e. values of 0-1, based on min and max values in raw data within
the urban footprint). The same procedure was applied to population
and the poverty data (or equivalent indicator - see Table S2). As there
were no suitable pressure datasets for H&W, we combined the
standardised population and prevalence of poverty data to repre-
sent a weighted demand, on the basis that higher prevalence of
poverty is associated with lower health and well-being.
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2.8. Mapping of ES supply

ES supply was calculated, e.g. the amount of pollution removed,
the cooling provided using the methods described above, and based
on the location of the relevant UGI (i.e. that which is providing the
service). Focal statistics were used to characterise the area sur-
rounding each raster cell to identify areas potentially benefitting
from each service. For PM; 5 removal, we applied a neighbourhood
of 500 m radius, based on other PM air pollution-related studies
(e.g. Lei et al., 2018; Vivanco-Hidalgo et al., 2018; Wu et al., 2018;
Chen et al., 2019). For cooling, supply was calculated as a propor-
tion of the maximum possible (i.e. 100% high green cover)
within a neighbourhood of radius 500 m (for consistency with
PM removal). A number of the health and well-being benefits
of green space involve being physically located at, or near to,
the green spaces in question. For consistency with the WHO def-
inition for accessible greenspace, we quantified the proportion of
green land cover within a circular neighbourhood of radius 300 m.

3. Results
3.1. Urban footprints

For all cities, the derived urban footprint based on urban mor-
phology is substantially smaller than the administrative boundary
(Table 1 and Fig. 3). Large areas of green space surrounding the
built-up ‘urban’ core of the cities (mainly comprising farmland, for-
est and scrub) are excluded from the analysis, which is focused on
urban green and blue spaces. It is also worth noting that the area
of non-urban greenspace beyond the urban footprint varies consid-
erably between cities, with the urban footprint occupying between
21% for Kigali and 98% for Leicester. Most of the urban footprints
have multiple parts (a maximum of seven - Kigali), representing
the sometimes discontinuous nature of the urban fabric within the
administrative boundaries.

Fig. 2. Conceptual approach to deriving ‘weighted demand’ for ES. Higher numbers of people, higher levels of poverty and higher levels of pressure all lead to increased demand.
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Table 1
Urban footprint (UF) areas, the percentage they occupy of the administrative boundaries,
and the % land cover types of the UF area, for each of the five cities.

City UFarea UFas% of High Low Blue Combined
(km?) admin area green green space  blue/green space
Dhaka 209.2 70.0% 31%  329% 4.52% 40.6%
Kigali 156.6 21.5% 25% 47.7% 0.13% 503%
Leicester 64.5 97.9% 3.5% 336% 052% 37.6%
Medellin  117.8 31.8% 13.1%  21.7% 0.06% 34.9%
Zomba 16.2 38.7% 24% 452% 0.03% 47.7%

3.2. Relative proportions of land covers

Despite the large variation in the size (Table 1) and historical devel-
opment (Appendix I and Supplementary material) of the five case study
cities, there is relatively little variation in the proportional coverage of
combined green and blue space (~15% variation). Most of the cities
have very small proportions of blue space, although Dhaka with 5%
has substantially more than the others. The two African cities, Kigali
and Zomba, maintain noticeably more low green space than the other

Science of the Total Environment 785 (2021) 147238

cities (between 12% and 15% more than the next highest). Most striking
is the considerably higher proportion of high green coverage in
Medellin, which has 13% coverage by area (a full 10% more than the
next highest), despite having the lowest combined green and blue
space coverage (only 35%).

3.3. Urban green and blue space benefits

Variation in the PM; 5 removal figures are broadly in proportion to
ambient atmospheric concentrations (Table 2), although noticeable de-
viations from this trend are observed in Medellin and Zomba, due to
their respectively higher and lower proportional urban woodland
cover values - PM, 5 removal being solely attributed to this class of
land cover class.

Mean estimated cooling effects of urban green and blue space
(Table 2) are similar for Dhaka, Kigali and Zomba, when averaged across
their entire urban footprint, with cooling effects between 0.6 °C and
0.65 °C. Leicester's urban green and blue space was estimated to provide
a smaller cooling effect (0.44 °C) due to its temperate climate, in which
urban woodland contributes less to the overall cooling effects. Medellin
saw the largest cooling effect from urban green and blue space, of the

A

;\B

Scale: 10 km|

|| Iscale: 15 km |

N

|| |scale: 5 km |

D E

Scale: 10 km

Scale: S km

cale: 5 km | |

Legend
Urban Footprint

_ Water

I Built Environment
I Administrative Boundary [l Low Green (grass, scrub, etc.)
B High Green (woody vegetation, trees, etc.)

Fig. 3. Land Cover maps for A) Dhaka City, B) Kigali City, C) Leicester City, D) Medellin City, E) Zomba City, and F) the true colour satellite imagery for Zomba City (for reference with ‘E’)

showing the administrative boundary and the urban footprint.
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Table 2

Science of the Total Environment 785 (2021) 147238

Ecosystem service values for PM, 5 removal and cooling provided by urban green and blue space, for each of the five case study cities. Ambient PM, 5 and maximum daily temperatures for

2018 also provided for information.

City PM, s removed by Estimated change in PM; 5 Aggregate cooling Ambient PM, 5 Max daily temp
woodland (kg/yr) due to trees (ug/m>) effect (°C) (ng/m?) (2018) (°C)

Dhaka 48,402 —4.12 —0.63 63.58 37

Kigali 11,368 —1.49 —0.6 24.73 30

Leicester 3265 —0.83 —0.44 12.53 33

Medellin 13,164 —0.73 —0.98 7.3 31

Zomba 488 —0.62 —0.65 10.6 36

five cities. This is because Medellin has a significantly higher proportion
of the most effective land cover class for cooling (high green) relative to
the other cities.

In terms of access to combined green space (i.e. high and low green
aggregated, Fig. 4), all cities score highly, with a minimum of 84% of the
urban footprint population (Dhaka) (Fig. 4b) and 92% of the total urban
footprint (Dhaka and Medellin) (Fig. 4a) within 300 m of a parcel of
green space at least 0.5 ha in area. When looking only at high green
space, differences are more apparent. In Medellin, over 50% of the
urban footprint population and 54% of the total urban footprint have ac-
cess to high green, whereas the figure for the other cities lies between
17% and 25%.

Overall, the differences in the proportion of combined green and
blue space vary rather little between the five cities, by a maximum of
a factor 1.5 (Table 1). However, the amount of service provided by this
green and blue space shows much greater differences between cities.
The largest difference is for pollution removal, where the estimated
change in concentration due to vegetation differs by more than a factor
of six between Zomba and Dhaka. The other two services, cooling by
green and blue space, and access to greenspace differ by substantially
lower amounts.

3.4. Spatial patterns in pressure, weighted demand, and ES supply

The spatial patterns of pressure, demand, and (potential) supply
vary within cities and between different pressures within a city:

In Dhaka (Fig. 5), there is a strong gradient in PM, 5 pressure, with
the highest values in the North of the city diminishing in a Southerly di-
rection. Heat pressure is more dispersed, with multiple focal points. For
demand, there is an intense hotspot of demand for PM, 5 removal in the
far North of the city, while both H&W and cooling demand are greatest
in a relatively small area in the south of the city. The supply of PM, 5 re-
moval is mainly concentrated in one area in the north-central region of
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the urban footprint. This region corresponds with the city airport,
around which there are numerous trees. There are also a number of
more intense pockets of supply in a general north-south band, through
the centre of the city. Supply of cooling and of H&W mirrors the pattern
of supply of PM, 5 removal, but H&W values are typically higher.

In Kigali (Fig. S6), the high values of both PM, 5 and heat pressures
are greatest in the centre of the city, diminishing with distance out-
wards. Some of the smaller parts of the urban footprint also have ele-
vated levels of these pressures, particularly those in the east. The
demand for PM, 5 removal, cooling and H&W are all highest around
the western districts and are particularly intense around the nearby in-
tersection of three major roads. Demand for all ES is lowest around the
large green areas in the north of the urban footprint. The supply of PM, 5
and cooling have similar distributions to one another, following the pat-
tern of green space distribution seen in Fig. 3, with higher values around
the north-central part of the main urban footprint. Supply of H&W ben-
efits are particularly high in the same areas, but also in the Southern
fringes of the main urban footprint, as well as the separate, smaller
parts of the urban footprint.

In Leicester (Fig. S7), PM, s and heat pressure distributions fol-
low similar patterns, higher values in a north-south band following
the centrally located river, extreme high values more common to-
wards the northern and the southern ends. The demand for PM; 5
and cooling share a similar distributional pattern, broadly following
those of the pressures, but these are refined by the socio-economic
data, creating dispersed pockets of intense demand. H&W demand
follows the same pattern, although the pockets of high intensity de-
mand do not diminish with distance from the central river. The sup-
ply of all three ES follow a consistent pattern but vary in degrees of
intensity, with lowest levels of PM; s removal supply, increasing up
to a maximum with H&W supply. Higher values are distributed
around the periphery of the urban footprint, with lower values
dominating the city centre.
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Fig. 4. Access to green spaces and to high green spaces, of minimum 0.5 ha, calculated as % of urban footprint (A), and % of population (B), within 300 m.
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In Medellin (Fig. S8), the pressures of PM, 5 and heat are both
highest around the central transport artery (running from north to
south), values diminishing with distance from this central line - more
so to the east, where the terrain becomes steeper towards the edge of
the urban footprint. Since high levels of PM, 5 and heat pressure are
fairly evenly distributed, the patterns of demand are more strongly in-
fluenced by the poverty data, which is recorded at district level and gen-
erally shows higher values in the west and the north of the city. PM, 5
removal demand and cooling demand are therefore highest in an
outer band skirting the centre of the urban footprint. The distributional
pattern of H&W demand follows the same pattern, but higher values are

more prevalent. The supply of all three ES share a similar distributional
pattern. Central areas typically show low levels of supply, with the ex-
ception of a centrally located park, whereas fringes of the urban foot-
print have higher values - particularly areas in the west of the city.

In Zomba (Fig. S9), PM, 5 pressure is highest in the north of the city
and diminishes in a south-easterly direction, whereas heat pressure is
widespread, but with elevated values in the far west of the city, the
south-east of the main part of the urban footprint and the far north
east of the city. The demand for PM, s removal and cooling is most in-
tense in the far northeast of the urban footprint, around a major road.
Demand for H&W follows the same pattern as demand for the other
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two ES, but with a general greater prevalence of higher values. The sup-
ply of PM; 5 removal and cooling is largely confined to the western end
of the eastern part of the urban footprint. This region comprises a rela-
tively green university campus. The distribution of the supply of H&W
is broadly the inverse of its demand, with lower values around the cen-
tre of the main urban footprint and the smaller eastern part.

As an overall comparison across cities, the amount and distribution
of demand and service supply primarily reflect the combinations of in-
tensity of the pressure, spatial patterns of demand, and the amount
and type of UGI which is able to provide varying levels of ecosystem ser-
vice to meet that demand. Each city has its own characteristics, and
there is no consistent separation of the cities of the Global South from
Leicester in the UK.

4. Discussion
4.1. Urban footprint

We chose to focus on urban green and blue infrastructure, rather
than all green and blue infrastructure within an administrative region,
so it was necessary to define the urban footprint based on the built en-
vironment. The difference in area of the administrative boundaries and
their respective urban footprint highlights the importance of defining
UGl in an objective way. The observed range just within these five cities,
from 21% to 98% coverage of urban footprint within the administrative
area, suggests that comparisons which only use administrative area
may greatly over-estimate the amount of effective urban greenspace
for many cities. This approach focusing on urban footprint is consis-
tent with the definition of urban used for calculation of Sustainable
Development Goal indicators for urban areas, e.g. SDG 11.7.1 on ac-
cessible open space (UN, 2015).

In this study, the administrative boundary was used to clip the con-
tinuous urban footprint for some cities in order to make best use of asso-
ciated socio-economic data. Where other urban areas lie immediately
adjacent to the boundary itself, or are continuous beyond that boundary,
this may have two effects related to use and potential supply of ecosys-
tem services lying either side of the boundary. Firstly, other UGI outside
the boundary may benefit some of the population within the study area,
while conversely UGI within the study area may provide additional ben-
efit to adjacent urban areas. This provides a justification for a joined-up
consultative approach to city planning, particularly where boundaries
are strategically important, otherwise the risk is that fringe areas ‘fall
through the gaps’ and are not appropriately considered in plans.

4.2. Ecosystem service supply

Although the overall proportion of combined UGI varied relatively
little between our study cities, the amount of service that these areas
provided showed larger differences. This illustrates primarily that UGI
does not provide the same amount of service in every location, and
therefore a context-specific analysis is required when assessing the ben-
efits that it provides, not just a simple look-up table that is applied
without discretion in all locations, which is unfortunately applied rather
frequently (Campagne et al., 2020). This analysis shows that a context-
specific analysis is possible with globally available datasets. For the pol-
lution removal, this is partly because trees become more efficient at re-
moving pollution when concentrations are higher (Nemitz et al., 2020),
but the spatial context to the analysis plays a role in all three services in
determining the level of benefit that can be attained.

4.3. Weighted demand

Our weighted demand metric provides a more useful and tractable
representation of demand for mitigation than simplistic depictions of
pressures (e.g. PM, 5 concentrations) as it incorporates the human ele-
ment, both in terms of exposure (i.e. number of people) and sensitivity
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(i.e. poverty). Similar approaches are now being applied in some cities,
for example to inform performance planning of UGI to meet
pre-specified objectives (Cortinovis and Geneletti, 2020). Our results
highlight that demand for different green intervention types can have
different, and sometimes overlapping, spatial distributions. Differential
spatial accessibility of greenspace has been shown in some studies,
e.g. in Wuhan, China, accessibility to woods and parks differed in central
city areas compared with the outskirts (He et al., 2020). Characterising
the spatial pattern of demand is critical for addressing issues of inequity
of access to UGI benefits, as the importance of environmental justice is
increasingly recognised in urban planning (Wolch et al., 2014; Hunter
et al,, 2019; Langemeyer and Connolly, 2020). As a result, it can help
identify optimal locations for interventions, allowing decision makers
to prioritise and obtain more effective outcomes, within a context of
competing demands for budgets. It also allows effective design of inter-
ventions and management of trade-offs. For instance, trees are routinely
planted to provide shade, to mitigate against urban heat problems, and
to remove air pollution. However some tree species (e.g. eucalyptus)
produce large quantities of Biogenic Volatile Organic Compounds
(BVOCs), including isoprene, which can enhance the formation of sec-
ondary air pollutants, including PM and ozone (Yang et al., 2015).
Dhaka authority has previously planted Eucalyptus species for shading
purposes (Ali, 1996). If they were to plant these trees in the north of
the city, where there is elevated demand for both PM removal and
cooling (see Fig. 5, panels A and E), the high output of BVOCs could po-
tentially exacerbate the PM, 5 problems.

4.4. Differences across cities

Relatively few assessments have been run on cities in the Global
South, so the comparison of service provision among cities and with a
European city is instructive. Despite widely different levels of pressure
(e.g. PM, 5 concentrations varying by nearly an order of magnitude)
overall levels of service provision and proportions of UGI are broadly
similar among cities. This suggests that the capacity for UGI to provide
a service may be limited, and their contribution to mitigate extreme
levels of pressure cannot be considered a sole solution. Nonetheless,
large variations in wealth and the ability to control one's own living con-
ditions may mean that UGI in poorer neighbourhoods can achieve much
greater benefit than in richer neighbourhoods where residents can af-
ford to implement technical solutions in their homes to counter urban
pressures such as heat and air pollution (Adegun, 2017; de Sousa Silva
etal., 2018).

4.5. Reflections on the study approach

In this study we used broad classes of UGI, however further disaggre-
gation of vegetation types would allow more accurate estimates for ser-
vices that are reliant on the structure or type of vegetation. For example,
cooling is influenced by leaf area index and structure of vegetation, de-
scribed as vegetation intensity in some studies (see Morakinyo et al.,
2017). Fine resolution estimates of vegetation canopy (e.g. from
LiDAR) would enable calculation of vegetation height and volume,
which would be a major step towards providing the basis for such dis-
aggregation. Taking into account different vegetation types through ad-
ditional land cover classes would also help improve estimates of air
pollution removal which differ between deciduous trees and evergreen
trees (Jones et al.,, 2017).

We used Sentinel-2a data, with a horizontal resolution of 10 m.
Although this is relatively fine resolution, it is still likely to underrepresent
tree cover, in particular where trees are sparsely distributed. The implica-
tion of this is that pollution removal, relying entirely on high green land
cover, is under-estimated, but probably not cooling effects because this
requires a minimum threshold area of woodland to be effective (Yu
et al,, 2020). Rooftop gardening has become popular in Dhaka city, with
approximately 36% of rooftops used for gardening and vegetation
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cultivation (Uddin et al., 2016). This form of green space will also likely be
underrepresented in the land cover map, as the continuous area of these
types of vegetation are typically much smaller than 10 m by 10 m. Further
work on detection ability of satellite-derived NDVI would be highly
valuable.

The H&W benefits provided by green space, as a venue for various
activities (e.g. physical exercise, social interactions, etc.), is depend to
a large extent upon public access. Regardless of the spatial resolution
of remotely sensed data, public accessibility cannot be detected
(Andries et al., 2019), which means that estimates of H&W based solely
on such data must rely on the broad assumption that all green space is
publicly accessible. Such assumptions will rarely be valid, as areas
where the supply of ES is highest are not necessarily accessible. For in-
stance, in Dhaka, the main hotspot for the supply of all our mapped ES
(see Fig. 5C, F & H), is a military restricted area that is not accessible to
the general public. Other important factors, such as management and
upkeep of these spaces, as well as the presence of amenities (e.g.
cafes, public toilets, water fountains, etc.) are important factors in deter-
mining some components of usability (Wendel et al., 2012). Open spa-
tial data identifying publicly accessible areas would be a valuable
resource for quantifying the benefits of public UGI, as well as having
the potential for increasing these benefits through informing the public
of the availability of such venues. The supply and demand representation
presented here could provide an effective focal point for local authority
engagement by underscoring the multiple benefits of expanding accessi-
bility to these resources.

Use of global datasets allows consistent and objective comparisons
of study cities, however they are typically the product of generalisation
and may omit more localised, or fine-grain, patterns. For instance, the
PM, 5 dataset used in our study indicates that mean concentrations for
Medellin are relatively low, at around 7 ug/m>, however this is a sub-
stantial underestimate of concentrations experienced on the ground,
which are nearer to 25 pg/m> (del Pilar Arroyave-Maya et al., 2019).
Air quality is often monitored at relatively few sites and may be subject
to a number of sources of bias (e.g. monitoring stations only at locations
of high concentration), which limit their utility in spatial analysis of sup-
ply and demand. Socio-economic datasets vary considerably between
countries and cities in terms of which data are publicly available, at
what spatial or administrative resolution, and how up-to-date the
datasets are. Of these datasets, simple population data is arguably the
most important, where it is available at census levels below that of en-
tire city. This is because benefits are experienced by people. Beyond
simple population, further breakdown according to socio-economic
groups or proxy measures of wealth or deprivation, and breakdown ac-
cording to age groups, both serve as ways to further differentiate risk
among population to different groups. These risks may be different for
particular pressures. For example age is an important risk factor for
heat impacts (e.g. Gasparrini et al., 2012), and deprivation is important
for air pollution (e.g. Cesaroni et al., 2013).

5. Conclusions

The approach outlined here, which focuses on urban footprint,
avoids the inconsistencies which can arise from using administrative
boundaries that include large areas of non-urban land cover. The ap-
proach also takes into account the location of green and blue space,
and the exposure and vulnerability of the population to pressures
associated with urbanisation. Together, this enables more accurate
assessments of UGI, providing better information to planners and
policy-makers. In relation to equity and environmental justice is-
sues, this specifically allows planners to identify opportunities to re-
dress socio-economic inequities, which might otherwise be missed -
or worse, exacerbated. Thus, the approach outlined here can help
prioritise interventions to improve both health and well-being, and
the natural environment, by understanding the spatial relationships
between service supply and demand.
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While the methods described here represent a useful development,
further improvements in land cover classifications and data availability
(particularly around public accessibility of land and socio-economic in-
dicators) would improve the quality of information that can be provided
to planners and policy-makers through this kind of analysis.
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Appendix I. Case study city summaries

Dhaka (population 19,578,000 - UN, 2018). The capital and largest
city of Bangladesh, Dhaka is one of the largest and most densely pop-
ulated cities in the world. It has a tropical, hot, humid climate and is
located on the flat, low-lying, lower reaches of the Ganges delta,
making it particularly vulnerable to sea level rise and flooding. A
mega-city, Dhaka has been inhabited since the first millennium. It
is a city of global strategic importance, which has experienced
rapid population growth since the 1970s; although growth has di-
minished in more recent years, it is still very high (37.7% 2019).
This persistent growth is driving urbanisation and is reflected in
the city's continued spatial expansion (Roy et al., 2019).

Kigali (population 1,058,000 — UN, 2018). The capital and largest city
of Rwanda, Kigali has recently grown beyond 1 million people (with
city boundaries expanded). It has a tropical, warm, humid climate
and is located in a hilly landscape sprawling across four ridges, sep-
arated from each other by large valleys. Rapid hydrologic responses
from highly urbanised sub-catchments in the city, in combination
with poor drainage infrastructure management and lack of flood
management knowledge, make flooding a major issue. Urban
development often gives rise to dramatic changes in urban land
use, where natural green spaces are removed and replaced with
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impervious built-up surfaces. There are plans for further develop-
ment (2040 masterplan) including skyscrapers, pedestrian walk-
ways and green spaces.

Leicester (population 354,000 - ONS, 2017). The UK city of Leicester
is the most populous municipality within the East Midlands region
and the 11th most populous in England. It has a temperate climate
and is centred on the banks of the River Soar on flat to gently rolling
terrain. One of the oldest cities in England, with a history going back
at least two millennia, Leicester is a city with a historically moderate
rate of population growth that has increased somewhat in recent
decades.

Medellin (population 3,934,000 - UN, 2018): Medellin is the second
largest city in Colombia, after the capital, Bogota. It has a tropical,
warm, humid climate and is located within a narrow valley at
approx. 1500 m.a.s.l (60 km long and 8 to 10 km in its wider part).
With its surrounding area containing nine other cities, the metropol-
itan area is the second largest agglomeration of population and
economy (nearly four million inhabitants), in Colombia. Medellin
was nominated for ‘most innovative city of the year’ in 2012 and
won the award in 2013. Much new development is both planned
and ongoing.

Zomba (population 105,000 - NSO, 2018). Zomba was the capital of
Malawi until 1974, when this status was transferred to Lilongwe. It
has a tropical, hot, humid climate and is located along the banks of
the Mulunguzi River at the foot of the Zomba Plateau, an escarpment
that rises to some 1800 m. Although relatively small, Zomba is
steadily growing (1977 - 24 k, 2018 - 105 k) and is now the fourth
largest in Malawi.

Appendix II. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.147238.
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