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Abstract: Urbanisation processes inherently influence land cover (LC) and have dramatic impacts
on the amount, distribution and quality of vegetation cover. The latter are the source of ecosystem
services (ES) on which humans depend. However, the temporal and thematical dimensions are not
documented in a comparable manner across Europe and China. Three cities in China and three
cities in Europe were selected as case study areas to gain a picture of spatial urban dynamics at
intercontinental scale. First, we analysed available global and continental thematic LC products
as a data pool for sample selection and referencing our own mapping model. With the help of
the Google Earth Engine (GEE) platform and earth observation data, an automatic LC mapping
method tailored for more detailed ES features was proposed. To do so, differentiated LC categories
were quantified. In order to obtain a balance between efficiency and high classification accuracy,
we developed an optimal classification model by evaluating the importance of a large number of
spectral, texture-based indices and topographical information. The overall classification accuracies
range between 73% and 95% for different time slots and cities. To capture ES related LC categories in
great detail, deciduous and coniferous forests, cropland, grassland and bare land were effectively
identified. To understand inner urban options for potential new ES, dense and dispersed built-up
areas were differentiated with good results. In addition, this study focuses on the differences in
the characteristics of urban expansion witnessed in China and Europe. Our results reveal that
urbanisation has been more intense in the three Chinese cities than in the three European cities, with
an 84% increase in the entire built-up area over the last two decades. However, our results also show
the results of China’s ecological restoration policies, with a total of 963 km2 of new green and blue
LC created in the last two decades. We proved that our automatic mapping can be effectively applied
to future studies, and the monitoring results will be useful for consecutive ES analyses aimed at
achieving more environmentally friendly cities.

Keywords: urbanisation; satellite image preprocessing; automatic extraction of sample points; grey,
green and blue infrastructures; Google Earth Engine (GEE)

1. Introduction
1.1. Impact of Urbanisation Processes on Ecosystem Services

Increased urbanisation and the expansion of urban areas cause radical changes to and
the eradication and fragmentation of ecosystems and green infrastructure—particularly in
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China but also in Europe. Europe is already one of the most urbanised continents in the
world with about 74% of Europeans living in urban areas, while the level of urbanisation
in Asia is around 50% [1]. The urbanisation trend continues in Europe: Projections expect
84% of the total population to be living in urban areas by 2050, while China’s urbanisation
rate is expected to grow from the present day’s 61% to 80% by 2050 (ibid).

The challenges that cities face today include inequality at various levels, such as
inequality of resources and ecosystem service (ES) provision, as well as environmental
harm caused by increasing pressure by land takeover [2,3]. Since intense interdependencies
exist regarding the use of resources, urban growth has a tremendous impact on resource
regimes and ecosystems which make urban dwellers simultaneously culprits and victims
of urbanisation processes [4]. It is for this reason that the United Nations Sustainable
Development Goals (SDG), especially SDG 11 “Make cities inclusive, safe, resilient and
sustainable” [5] demand interactions in cities and understand the great potential with
which cities can contribute to sustainable development.

Urbanisation may be a global phenomenon. Yet, it does not play out as a homogeneous
process across continents and countries. Its primary driver is population growth, its
physical expression and the patterns are manifold, as is its impact on the urban environment.
To understand both urban impacts on local or regional ecosystems and urban dependence
on ecosystems, it is essential to map the variation within and between cities. Urban land
expands in different directions to provide space for living, public infrastructure, and
business at quite distinct urban land expansion rates, thus shifting its physical boundaries
into the more natural hinterland, which again diminishes non-artificial LC in these peri-
urban areas.

By mapping urbanisation processes over time, the different development phases of
cities in Europe and China become transparent. Such spatial investigations can explain
not only their growth patterns, like densification processes or leap-frog development, but
also the specific velocity and direction of change. Analysing urbanisation processes reveals
which other LC types have been superseded by buildings and urban infrastructures, at
which pace and in which magnitude the loss has taken place.

1.2. Transferable Land Cover Mapping Approach Based on Remote Sensing
1.2.1. Ready-Made Remote Sensing (RS) Products

When capturing the urban footprint, one of the most appropriate tools to use is RS,
its images and its methods [6]. Satellite images are the best source for mapping land
surface over large areas as well as over long periods of time. Observations need to be
extensive, regular and consistent to establish baselines and trends. It is a spatial analytical
technology that meets various scientific and planning requirements. The physical structure
and composition of urban areas can be mapped and monitored using the various spatial
and temporal scales at which images are acquired by different sensor systems. Landsat
is the longest-running civilian Earth-observing programme and fundamentally serves
environmental observation. Based on its vast datasets, global data infrastructures have
been developed to generate and disseminate mapping products that are made available
through different agencies (NASA; ESA; CNSA; JAXA; ISRO; AEB). Some of these mapping
products, like the Global Human Settlement Layer (GHSL), are available at global scale
and increase knowledge for organisations such as the UN, the OECD and the World Bank,
to name a few. They help researchers understand the global dynamics in urbanisation
processes and specialise in mapping built-up surfaces at an aggregated scale [7]. China
made the first open-access, high-resolution map of Earth’s land cover available to the United
Nations, the GlobeLand30, as a contribution towards global sustainable development
and climate change mitigation [8]. Annual maps of global urbanisation processes have
been developed since 1985, such as the GAIA (global artificial impervious area; [9]) and
GAUD (global annual urban dynamics; [10]) datasets. Yet, there is more detailed spatial
information for continents like Europe, where there are long-time projects such as the
CORINE (Coordination of Information on the Environment) Land Cover (initiated in the
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mid-1980s), the Urban Atlas (initiated in 2006, with updates in 2012 and 2018) and the
Copernicus services. The latter launched its Land Monitoring Service in 2012, and all these
platforms provide data on the European environment and various detailed information
to users free of charge. So, what we know and what we have at hand are a multitude
of publicly accessible products for environmental research containing defined sets of LC
categories at defined scales over specific periods of time or time slots. Such readily available
spatial information is especially of value for intra- and international comparisons in spatial
planning and research tackling urban and regional environmental issues. What is lacking
is a standardised set of LC categories across all these systems. They hardly cover similar
time spans, and most neither differentiate between dense and dispersed urban fabric, nor
between different types of vegetation cover (for details see Table 1). This deficiency may be
caused by the specifications under which they were developed, or by the specific scale they
refer to. For this reason, these thematic products can be used for general comparisons and
as a profound basis for further in-depth analysis.

1.2.2. Further RS Requirements for Capturing Key Elements of Urban LC Categories
across Continents

To assess LC in cities around the globe, all spatial information must be provided at
the same spatial and temporal scale and with the same detailed categories. If the designs
of the above-mentioned publicly available RS catalogues do not meet the requirements for
research on LC related to urban ES, then those catalogues can be taken as basic input for
training and validation to establish an ambitious classification scheme. Enhanced accuracy
would make RS more suitable for monitoring biodiversity loss and ecosystem dynamics,
for example, and for other applications that depend on baseline and changing LC [11].
To improve the accuracy of products derived from shared satellite observations of urban
areas, a spatial analysis needs to be undertaken developing elaborated methods and tools.
When mapping LC elements to determine the extent and condition of natural capital and
its biophysical expression over time, then the Google Earth Engine (GEE) serves as an
effective analytical platform. GEE is a sophisticated and scalable mapping tool, with which
we are enabled to determine the time courses of urban growth rates and quantify the other
more natural LC types that are being lost through advancing urbanisation.

The aim of this study is to design an automatic classification method at the interconti-
nental scale to understand the different urbanisation processes in Europe and China, firstly
by exploiting global urban datasets and secondly by a distinct mapping of grey, green
and blue features as a basis for further ES analysis. The methodological innovation of
our contribution includes an automatic variable selection for a more efficient creation and
application of the classification model. To realise this, a well-developed workflow for an
automatic samples collection based on the above-mentioned multi-source ground truth
and raster-based land cover products is presented. It is a prerequisite to collect spatial
information for both continents to obtain training and validation data. For reasons of
consistent results, we aim to capture key categories by elaborating a novel classification
approach. To make our approach easily reproducible for other cities, we develop this pro-
cessing workflow based on GEE. This enables us to take into account the existing thematic
products for LC, and extract valuable information for our discerning, globally applicable
mapping model presented here in Part 1. Because we will perform further ES analyses in
urban areas (Part 2), we undertake the effort to differentiate various types of vegetation
with distinctions between grassland and cropland, and deciduous and coniferous forests.
Up to present, there are no existing products for both China and Europe over decades
showing such levels of detail. For this reason, our research tackles this central question:
Can we capture a detailed LC mapping that contains highly differentiated categories for selected
cities in Asia and Europe by developing a streamlined processing in GEE? This encompasses two
secondary questions: Can we make distinctions between deciduous and coniferous forests and
between dense and dispersed urban areas? To what extent can we map cropland, grassland, and bare
land for each city?
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Table 1. Distinction of mapping categories between our own source for the sophisticated LC mapping model and selected global and European data sources.

Mapping Categories Own Source Reviewed Source of Categorical Definitions

Class name (30 m res.) Random forest (RF) classifier
for distinct LC mapping in GEE

Urban Atlas (2006/2012/2018)
30 m to 10 m res.

GAIA (1985–2018; annual)
GLC 30 m res.

GlobeLand30
(2000/2010)

GLC 30 m res.

CORINE Land Cover
(1990/2000/2006/2012/2018)

30 m res.

Water bodies Areas with standing and
flowing waters Water bodies Water. No definition n.a. Areas with standing and

flowing waters

Dense urban fabric

≥50% of the area covered by
built-up and other sealed
surfaces 17 × 17 moving

window

Continuous urban fabric (>80%)
Discontinuous dense urban

fabric (50–80%)
Global artificial impervious

areas—man-made structures.
Urban > 50%; proxy for

built-up areas.
No subdivision

Artificial surfaces: urban
areas, roads, asphalt.

Specific textual patterns
>50%

Artificial surface with land
use classification

Dispersed urban fabric

<50% of the area covered by
built-up and other sealed
surfaces 17 × 17 moving

window

Discontinuous medium density
urban fabric (30–50%)

Discontinuous low density urban
fabric (10–30%)

Open spaces/barren
lands (bare soils)

Bare land (i.e., areas with
uncovered soils) Land without current use Bare land Bare land Bare land

Perennial grassland and
shrubland/cultivated

land and cropland

Cropland
Deciduous forest
Coniferous forest

Grassland

Arable land
Pastures

Mixed cultivation
Deciduous forest
Coniferous forest
Green urban areas

Vegetation.
No definition

No further distinctions

Wetlands: bogs, fens,
meadows, peat land,

floodplains
Cultivated land

Grassland

Vegetated areas with land use
Deciduous forest
Coniferous forest
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2. Approach
2.1. Satellite Images and Ancillary Data

All data from the Landsat series are available at the GEE platform. In this research, we
used various datasets from Landsat sensors including the Landsat 5 Thematic Mapper (TM)
for 2000 and 2010, and the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared
Sensor (TIRS) for 2020. The Landsat series offer the most long-term satellite images at
the same spatial scale of 30 m ground resolution and make it possible to extract the same
spectral resolution over decades. Their global repetition rate of 16 days means that data
is acquired throughout the entire year which makes it easier to find images with no or
minimum cloud cover.

2.2. Reference Data for Sample Points

The selection of reference data was driven by two main factors. On the one hand,
spatial coverage was important, as the different urban areas are located across China and
Europe. Thus, only global datasets were considered at the beginning. This selection proved
to be too narrow, so we expanded our analysis to include European and Chinese datasets.
They feature different LC classes in greater detail. The second factor we considered pertains
to the temporal coverage, which represents continuity. All the selected thematic mapping
products feature different intervals, but they are available for at least three points in time
and thereby map the changes in LC over decades. The data used to generate the sample
points in this study were sourced from the following ground-truth-based and remotely
sensed products.

2.2.1. Datasets for Sample Point Extraction Based on Ground Truth
CORINE Land Cover

The Coordination of Information on the Environment land cover, also known as the
CORINE Land Cover or CLC, is a European land use and land cover product spanning
the years 1990 to currently 2018 in six- to 10-year increments. The classification system
is based on 13 main classes and contains 44 classes in total. Its contents are generated
through manual and automatic classification of satellite images as well as field surveys.
The product is available as a raster dataset with a resolution of 30 m. The overall accuracy
is specified as 87% with different classes ranging from 70% to 95%, but several studies
have shown this to be inaccurate and, depending on the land cover and land use class, the
rate of accuracy ranges from 82.8% to 97.6% for different years [12–14]. However, given its
good temporal coverage, the product was deemed to be a suitable reference for this study.

Urban Atlas

The Urban Atlas is another European mixed land cover and land use product. It is
available for the years 2006, 2012 and 2018 with 21 and 27 classes for the last two versions.
The coverage was also increased from 305 to 695 cities in 2012 and then to 788 cities in
2018 [15,16]. Spatial accuracy is presented at 5 m [16]. The accuracy is reported to be
above 80% for all classes, whereby the 2012 product has different accuracies for urban and
rural areas (98.4% and 96.9% respectively) [15,17]. Agreement between the GlobeLand30
product and the Urban Atlas is reported to be above 85% [18]. The urban setting of this
product along with its temporal continuity and high spatial accuracy meant that it was also
considered to be a good reference.

The Land Use and Land Cover Area Frame Survey (LUCAS) Sample Points

LUCAS is a land cover and land use survey for Europe conducted by the European
statistical office [19] on a three-year basis. The dataset includes some 240,000 individual
points in the latest version from 2018, all measured in situ. Thus, the dataset not only
provides information about the predominant LC, but also about land use. It features
16 thematic classes that are determined either through the interpretation of RS data or by
on-site evaluation, along with photo documentation taken in the field. The field work
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guidelines allow for consistent classification by minimising the influence of the respective
surveyor on site [19]. Because of their consistency, the sample points are available over
time and match well with the classes used for the mapping. For this reason, they are used
to validate the LC mapping of the European cities studied here.

2.2.2. Datasets for Sample Point Extraction Based on RS Products
GlobeLand30

GlobeLand30 is a 30-m resolution global LC data product for 2000, 2010 and 2020
that was developed by the Chinese Ministry of Natural Resources [8]. It comprises ten
thematic classes including cropland, forest, grassland, shrubland, wetland, water bodies,
tundra, artificial surface, bare land, perennial snow, and ice. The multispectral images
used to develop and update the LC classification are derived from the sensors TM5, ETM+,
OLI of Landsat (USA), as well as HJ-1 and GF-1 (China). Image selection followed the
principle that the image is cloudless (or has less cloud), and the multispectral images refer
to the growing season of vegetation within ± 2 years of the baseline year when the data
was produced or updated. For areas that are difficult to obtain, the image acquisition
time could be adapted to ensure the integrity of the global coverage. The total accuracy
of GlobeLand30 was 83.5% in 2010 and 85.7% in 2020, their Kappa coefficients were 0.78
and 0.82, respectively. The results were validated by over 230,000 points from the whole
dataset using the landscape index sampling model [20]. It can provide us with the latest
information on LC in 2020 for validating the current mapping work.

Forest Maps

In order to further distinguish between different forest types (deciduous and conif-
erous) in our mapping model, the 2010 China Forest Type Classification and Mapping
Products were used to select sample points for the three Chinese cities [21]. The 30 m
resolution forest map for China was established using Landsat TM, by the Moderate Res-
olution Imaging Spectrometer (MODIS) time-series at 250 m ground resolution, by the
Enhanced Vegetation Index (EVI) and other auxiliary datasets. The classification of forested
areas is comprised of six types: coniferous/deciduous broadleaf, coniferous/deciduous
coniferous, mixed forests, and bamboos. To assess the accuracy of the forest/non-forest
classification, 2195 test sample units were used independently of the training sample. The
quality indicates a producer’s accuracy (PA) of 92.0%, user’s accuracy (UA) of 95.7% and
an overall accuracy (OA) of 72.7%.

The Chinese Academy of Sciences (CAS) LC Dataset

To classify the Chinese cities more efficiently with regard to the distinction of bare land,
waterbodies and grassland, we used the 30 m resolution land use and land cover products
derived from Resource and Environment Science Data Center, CAS (www.resdc.cn. Note:
This source of land use and land cover products is not entirely public. The products with
1-km resolution are open access after free registration, while the 30-m products should
be requested and purchased on the website. All information on the website is in Chinese
only). Here, we extracted the maps for 2000, 2005, 2010 and 2015 that are based on multi-
sources RS images from Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI. This sequence of
datasets was validated by sample points through field investigation with Kappa coefficients
of more than 0.8 and accuracy of bare land, waterbodies and grassland of more than 85%,
90%, and 90% respectively [22].

The Peking University UrbanScape Essential Dataset (PKU-USED) for Beijing

To distinguish between dense and dispersed built-up areas, we made use of the USED
maps to create sample points to validate our current mapping for Beijing. We extracted the
dataset using the functional zones mapping tools [23,24] which are based on the Chinese
satellites ZY-3, GF-6, and GEE imagery repository [25]. The urban functional zones are
divided into twelve categories and have a spatial resolution of 2.4 m.

www.resdc.cn
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The Thematic Mapping Product GAIA

As a high-resolution global artificial impervious area product, GAIA acquired Landsat
Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Oper-
ational Land Imager (OLI) data in different years to map the artificial impervious areas.
It features a 30 m resolution and contains more than 30 years of records (from 1985 to
2018) with a mean overall accuracy of above 90% [9]. In this study, GAIA was used to
help generate samples for built-up areas in the six cities in 2000, 2010, and 2020. The
GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn and is also
available on GEE (Tsinghua/FROM-GLC/GAIA/v10).

2.2.3. Input Data for Samples Generation

We extracted all the thematic products at the global and continental scales to generate
samples. This sample selection is essential for training the mapping model and for valida-
tion purposes. These data served as our input data source pool, out of which we extracted
the best fit for our own mapping model. The details of the LC products we used are listed
above, the methodology of how we used the samples selection is explained in Section 3.3.2.

3. Discerning Methodology
3.1. Study Area

The study area is composed of three cities in Europe (Paris Region, Aarhus and Velika
Gorica) and three in China (Beijing, Shanghai, Ningbo). Figure 1 illustrates their locations.
These urban areas vary in their spatial extent, population number and density, and the
velocity of their urbanisation processes. Their diversity is valuable for testing existing
mapping products at an intercontinental scale and demonstrating the applicability of our
mapping model. By choosing a diverse variety of cities, we can ensure the transferability
of our GEE approach. The common interest among the six cities is their commitment to
foster green infrastructure and their related ES in the respective urban areas.
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Paris Region is the capital region of France with a land area of 12,012 km2, home to
12 million inhabitants or 18.2% of the population of France. 21% of the territory is urbanised
(16% totally impermeable), 23% covered by forests and 47% of the territory is composed
of cultivated, mainly intensive open field crops. Biodiversity has greatly depleted over

http://data.ess.tsinghua.edu.cn
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the last decade, which is especially visible in agricultural areas and in urban parks and
gardens. Green space per inhabitant is very scarce in the four départements within the inner
ring of the Paris Region—it varies between 2 and 10 m2 depending on administrative unit.
The region experiences substantial land take with more than 900 hectares of rural area
consumed each year by urbanisation.

City of Aarhus is the second largest city in Denmark with 273,077 inhabitants with a
land area of 468 km2 and a total municipal population of 341,000. The urban area of Aarhus
is 91 km2 and its population density is around 3000 inhabitants per km2, compared to an
average of 272 people per km2 for the entire municipality. Over 90% of the inhabitants have
access to green space within 500 m and the authorities aim to sustain or increase green
area per inhabitant through green/blue structure planning despite densification. The city
anticipates densification with an additional 75,000 inhabitants by 2030.

City of Velika Gorica is the sixth largest city in Croatia with 63,517 inhabitants and is
located in close vicinity to the City of Zagreb, the capital of Croatia. The municipality covers
328 km2 and has 193 inhabitants per km2. In contrast, the urban area covers only around
13 km2 (ca. 4%) and experienced intensive construction during the 1970s and 1980s. Here,
32,000 inhabitants live with a population density of around 2500 people per km2. In the near
vicinity, lowland, humid wooded areas host the highest woodland biodiversity nationally.

Beijing is the capital city of China with a land area of 16,410 km2. Beijing has gone
through a rapid urbanisation process in the past four decades. Beijing’s permanent popu-
lation increased from 13.8 million in 2000 to 21.7 million in 2016, while the built-up area
expanded from 488 km2 to 1400 km2 in the same period. Urban green space accounts
for about 821 km2, corresponding to 21 m2 per inhabitant. By the end of 2015 there were
339 registered municipal parks.

Shanghai is the largest city in China. It is located on the banks of the Yangtze River
Delta in Eastern China and covers a total area of 6340 km2. Shanghai has the world’s largest
port and a population of 24.2 million, including a transient population of more than two
million. The city owns various types of natural wetlands which account for 23.5% of its
total area, but these have suffered from a loss of biodiversity and vegetation decline. As
the administration aims to transform the city into an “ecological city”, construction and
protection of green spaces, forests, and wetlands have been launched across the city.

Ningbo is an important port city in China. Located 220 km south of Shanghai, it
belongs to the densely populated Yangtze River Delta region. Having undergone heavy
urbanisation processes including land reclamation that involved dams, bridges, and port
constructions, it has expanded its surface area. Presently, it covers an area of 9670 km2 and
is home to about 5.7 million inhabitants, representing a population density of 584 per km2.
Although there is an emphasis on environmental sustainability with high investment in
green and blue infrastructures, there is a lack of design and management at the urban level.

To gain an understanding of the historical urbanisation developments of the study
areas, we illustrate the urban LC product GAIA. In Appendix A, Figure A1a–f illustrates the
dynamic urban expansion of the six cities in their various expressions. All the information,
originally mapped at a 30 m ground resolution, is aggregated to a spatial resolution of
100 m to ease visualisation.

Regarding the European cities, it is striking that there is only some development in
Aarhus (Figure A1a), mainly in the western and northern parts. Radial urban dynamics fol-
lowing the lines of transport infrastructure are discernible in the Paris Region (Figure A1b)
that reach far into the surrounding rural area. In Velika Gorica (Figure A1c), the urban LC
is expanding the urban core area, extending further towards Zagreb Airport in the north,
and along the main transport lines.

The monitoring result for the Chinese cities shows quite a different picture that is
much more intense in terms of velocity of change and coverage of land take: Beijing is
expanding intensively from the core area (baseline 1985). Due to its geotopography with
mountainous ranges from the west to the north and northeast, further LC expansion shows
a dispersal pattern severely occupying the plains towards the southwest and southern
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region (Figure A1d). The most extreme urbanisation process is witnessed in Shanghai
(Figure A1e), with the highest density development patterns now reaching the distant
Chongming Island. Ningbo (Figure A1f) has extended its urbanised area by growing like a
network, changing the urban LC by forging connections with neighbouring cities.

3.2. Defining Essential LC Mapping Categories to Achieve Research Objectives

We developed a profound understanding of the existing thematic mapping products that
visualise the spatial dynamics of the entire study area. When analysing the definitions of their
quantified categories, we discovered gaps in the knowledge about intra-urban development,
i.e., a differentiation between dense and dispersed urban areas in the global datasets. Such an
inner-urban distinction would make it easier to monitor densification processes and reveal
needs for green spaces inside cities. Above all, we discovered a lack of distinctions between
different types of vegetation cover, which is critical for measuring the loss and gain of LC
features towards spatial allocation of ES over time. For this reason, we aimed to extract
distinct categories such as cropland, grassland and bare land, and differentiated between
deciduous and coniferous forests. Table 1 provides an overview of the LC products we used
and shows how it was necessary to produce the essential LC categories in this study.

3.3. GEE Mapping Procedure

In order to develop a consistent, automated workflow to map distinct LC features as
the basis for further ES analysis, our workflow was developed using full temporal Landsat
images, Shuttle Radar Topography Mission (SRTM) data, multiple open-source LC prod-
ucts, and the GEE platform. Our workflow is divided into three parts: (1) preprocessing
of satellite images, (2) reference samples selection, (3) mapping of grey, green and blue
infrastructures (Figure 2).
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3.3.1. Preprocessing of Satellite Images

As GEE provides free access to all Landsat surface reflectance images, we used the
Landsat 5 TM surface reflectance Tier 2 product from GEE for 2000 and 2010 LC mapping.
For 2020 we opted for the Landsat 8 OLI/TIRS surface reflectance Tier 2 product. All the
cloud and cloud shadow pixels were removed using C implementation of the Function of
Mask (CF Mask) algorithm [26].

To test which variable was important for mapping urban LC categories, we prepared
a total of 32 variables. The specific variables are as follows:

1. Seven spectral reflectance (SR) bands, including blue, green, red, near infrared (NIR),
short-wave infrared (SWIR1, SWIR2), and bright temperature

2. Three texture variables from the Grey-Level Co-occurrence Matrix (GLCM) measurement
3. Annual median composited surface reflectance images: we calculated fifteen spectral

indices, including the Normalised Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Land Surface Water Index (LSWI), Modified Normalised
Difference Water Index (mNDWI), Normalised Difference Built Index (NDBI), Caly
Minerals Ratio (CMR), Normalised Difference Snow Index (NDSI), Modified Soil
Adjusted Vegetation Index (MSAVI), Spectral Variability Vegetation Index (SVVI),
Transformed Difference Vegetation Index (TDVI), Normalised Built-up Index (NBAI),
Chlorophyll vegetation Index (CIgreen), and Tasseled Cap Transformation (TCP)
based Wetness, Greenness, and Brightness

4. Four seasonal indices derived from multi-temporal spectral indices
5. Four topographic variables as auxiliary parameters for the classification

All the variables used are presented in Table 2, which documents the type of variable
and its formula and reference, where applicable.

Table 2. Description of spectral, texture and seasonal variables and relevant references.

Code Type Variables Formula Reference

1–7 Spectral Reflectance

Blue
Surface reflectance bands of Landsat-5/7 TM data

and Landsat-8 OLI/TIRS, where Blue, Green,
Red, NIR, SWIR1, SWIR2, BT1, BT2 are band1(2),
band2(3), band3(4), band4(5), band5(6), band7(7)

and band6(10) of Landsat-5/7(8), respectively.

[27,28]

Green
Red
NIR

SWIR1
SWIR2

Bright temperature (BT)

8–10 Texture
glcm_var Measures how spread out the distribution of grey

levels is
[29,30]glcm_contrast Measures the local contrast of an image

glcm_savg Sum Average

11–25 Spectral
Indices

NDVI (NIR − R)/(NIR + R) [31]
EVI 2.5 (NIR − RED)/(NIR + 6R − 7.5B + 1) [32]

LSWI (NIR − SWIR1)/(NIR + SWIR1) [33]
mNDWI (GREEN − SWIR1)/(GREEN + SWIR2) [34]

NDBI (SWIR1 − NIR)/(SWIR1 + NIR) [35]
CMR SWIR1/SWIR2 [36]
NDSI (SWIR1− SWIR2)/(SWIR1 + SWIR2) [37]

MSAVI ((2NIR + 1)−
√
(2NIR + 1)2 − 8(NIR− R))/2 [38]

SVVI SD(B,G,R,NIR,SWIR1,SWIR2)-
SD(NIR,SWIR1,SWIR2) [39]

TDVI 1.5((NIR-R)/((2NIR + R+0.5)2)) [40]
NBAI (SWIR2 − (SWIR1/G))/(SWIR2 + (SWIR1/G)) [41]

CIgreen NIR/G-1 [42]
Wetness

Tasseled Cap Transformation (TCP) [43,44]Greenness
Brightness
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Table 2. Cont.

Code Type Variables Formula Reference

26–28 Seasonal
Indices

VIseasonal-Dual-Season
Vegetation Indices:

VI-NDVI, mNDWI, SVVI
(VIwet − VIdry)/(VIwet + VIdry) [45]

29–32 Topographic
Variables

Elevation
Slope

Aspect
Hillshade

SRTM (Shuttle Radar Topography Mission)
SRTM90_V4 data derived [46,47]

3.3.2. Reference Samples Selection

As a novelty in the reference samples selection, we elaborated a sophisticated work-
flow for an automatic samples collection based on multi-source ground truth and raster-
based LC products. As shown in Section 2.2, both ground-truth samples and remotely
sensed datasets were used to generate reference samples. Firstly, the vector datasets, such
as LUCAS sample points, were filtered and matched for each category. In addition, ready-
made raster products such as GlobeLand30 were exploited. We collected sample points
in three steps: (1) generating random points; (2) extracting values from raster products;
(3) rebuilding classification code for each category. We depict the training and validation
sample points in Table 3.

Table 3. Number of used training sample points (T) and validation sample points (V) of each category for six cities in 2000,
2010 and 2020.

City Year Type Built-Up Cropland Deciduous
Forest

Coniferous
Forest Grassland Bare

Land Water

Paris
Region

2000
T 317 3190 1051 60 389 40 69
V 136 1367 450 26 167 17 30

Sum 453 4557 1501 86 556 57 99

2010
T 454 1488 616 46 58 12 21
V 195 638 264 20 25 5 9

Sum 649 2126 880 66 83 17 30

2020
T 438 4713 1642 168 70 32 68
V 188 2020 704 72 30 14 29

Total 626 6733 2346 240 100 46 97

Velika
Gorica

2000
T 107 1110 2027 66 250 28 60
V 46 476 869 28 107 12 26

Sum 153 1586 2896 94 357 40 86

2010
T 132 468 1080 88 124 22 60
V 57 201 463 38 53 9 26

Sum 189 669 1543 126 177 31 86

2020
T 106 645 36 42 22 20 60
V 45 276 15 18 9 9 26

Sum 151 921 51 60 31 29 86

Aarhus

2000
T 118 102 732 30 145 21 78
V 51 44 314 13 62 9 33

Sum 169 146 1046 43 207 30 111

2010
T 230 780 500 320 20 38 90
V 99 334 214 137 9 16 39

Sum 329 1114 714 457 29 54 129

2020
T 108 1074 79 89 38 20 180
V 46 460 34 38 16 9 77

Sum 154 1534 113 127 54 29 257
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Table 3. Cont.

City Year Type Built-Up Cropland Deciduous
Forest

Coniferous
Forest Grassland Bare

Land Water

Beijing

2000
T 222 731 124 149 231 52 31
V 95 313 53 64 99 22 13

Sum 317 1044 177 213 330 74 44

2010
T 446 989 306 70 289 18 31
V 191 424 131 30 124 8 13

Sum 637 1413 437 100 413 26 44

2020
T 253 743 445 152 491 45 28
V 108 318 191 65 210 19 12

Total 361 1061 636 217 701 64 40

Shanghai

2000
T 633 2120 40 185 173 48 359
V 271 909 17 79 74 21 154

Sum 904 3029 57 264 247 69 513

2010
T 636 906 92 35 66 16 242
V 273 388 39 15 28 7 104

Sum 909 1294 131 50 94 23 346

2020
T 319 406 48 68 56 25 429
V 137 174 21 29 24 11 184

Sum 456 580 69 97 80 36 613

Ningbo

2000
T 182 1008 130 199 164 35 80
V 78 432 56 85 70 15 34

Sum 260 1440 186 284 234 50 114

2010
T 194 508 10 137 227 40 132
V 83 218 4 59 97 17 57

Sum 277 726 14 196 324 57 189

2020
T 127 256 15 378 66 58 453
V 54 110 6 162 28 25 194

Sum 181 366 21 540 94 83 647

Assessment of Variable Importance

Ideally, more variables would lead to a better representation of the features of LC
and improve the mapping accuracy. However, previous studies have shown that the
accuracy and efficiency of the classification is affected by the high correlation of the data,
the noise in the data collection and correction process, and the increase in computational
complexity [48,49].

As a measurement for node impurity, the value of GINI can indicate how often
a random instance will be misclassified. Therefore, GINI can be used to evaluate the
importance of each variable [50,51]. In the RF model, GINI is calculated over all trees
as the averaged reduction of node impurity on one splitting variable. Since significant
variables can substantially reduce the impurity of the sample, the higher GINI values
represent greater importance of the variable. This index was used as a criterion to evaluate
the importance of the variables [49]. Technically, the GINI index can be calculated in
GEE directly.

3.3.3. Mapping of Grey, Green and Blue Infrastructures
Random Forest Classifier

To date, Random Forest is the most widely used classifier for LC classifications [52–55].
Previous studies have shown that, compared with support vector machine (SVM), k-nearest
neighbour (KNN), maximum likelihood classifier (MLC) and other models, RF has a higher
classification accuracy, makes more effective use of high-dimensional data, and has higher
model efficiency. Therefore, RF was used as the classifier for LC mapping based on the
training samples from 3.2.2 and filtered variables. To benefit most of RF, we designed an
automatic variables selection for a more efficient creation of a classification model.
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Based on the knowledge from previous studies, good results can be obtained using
number of trees (Ntree) as 100, and higher values do not significantly increase the accuracy
of the classification [56–61]. In addition, previous studies suggested that the RF method is
not very sensitive to the number of features randomly chosen to split each node (Mty) [62].
Therefore, the Ntree was set as 100 and the default parameter of Mtry was utilised in
our study.

Validation

In this study, confusion matrixes were calculated based on reference validation sam-
ples to evaluate the accuracy of the classification result [63]. Several evaluation indicators
were extracted, including overall accuracy (OA), producer’s accuracy (PA) and Kappa value.
We used 70% of collected samples of each category as training samples, while the remaining
samples (30%) were utilised for accuracy evaluation. The code to reproduce the validation
in GEE is https://code.earthengine.google.com/888298b27c9b084154088bee968953d2.

Post-Classification of Dense and Dispersed Built-Up Areas

The dense built-up category refers to built-up areas with dense building stock, includ-
ing informal settlements and asphalt roads. The dispersed built-up category represents
impervious surface areas with ventilation space, open spaces for ventilation and green
areas, which are typical of scattered residential areas, high-rise building areas, the urban
fringe, and the rural hinterland [64].

To differentiate between the built-up urban areas on the basis of density, the built-up
kernel density was generated applying a 17 × 17 pixels moving window according to
the equation below. The size of the moving window follows the rule of the CORINE LC
definition. Thus, the coverage of the built-up area was further reclassified into dense and
dispersed built-up areas. The equation is as follows:

ρb = ∑n2

i
xij
n2{

ρb ≥ 50%, dense built− up
ρb < 50%, dispersed built− up

(1)

where xij represents the value of pixel i j. The value is 1 when it belongs to the built-up and
0 when it is the non-built-up LULC, n is the size of the moving window, which is set to
17 (with reference to CORINE land cover). ρb signifies the dense built-up area, if ρb is at
least 50% or greater in moving window. If ρb is less than 50%, then the value is assigned to
dispersed built-up area. The code for this step in GEE is https://code.earthengine.google.
com/18c309ec9665c9895850390fe18f37fd.

4. Results
4.1. Feature Selection and Ranking

In Figure 3, we have summarised the results of scores to determine the importance
of the variables for our RF mapping model. The results show that the seasonal index
was one of the most significant variables for prediction, suggesting the value of temporal
information. The seasonality enabled us to distinguish between cropland and grassland
as well as between the two forest types. By doing so, we proved the seasonal index by
Reschke and Hüttich [45] to highlight the differences among various types of vegetation.
High-ranked variables also comprised TCP-based greenness, MNDWI, Red band, CIgreen
index and seasonal index VI-MNDWI. However, several variables including four kinds of
topographic variables and NIR, BT, wetness, SVVI and TDVI, were lower ranked. In hilly
areas, for instance in Beijing and Ningbo, the topographic variables such as slope and DEM
ranked highly.

https://code.earthengine.google.com/888298b27c9b084154088bee968953d2
https://code.earthengine.google.com/18c309ec9665c9895850390fe18f37fd
https://code.earthengine.google.com/18c309ec9665c9895850390fe18f37fd
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In addition, Figure 3 reflects the change that took place in the overall classification
accuracy as the categorical variables increased. The results show that the initial variable
input clearly improves the classification accuracy, but when the number of variables
reaches a certain level, the classification accuracy can no longer improve. Instead, some
classification accuracies actually decrease as the variables increase, such as for Aarhus,
Beijing and Shanghai. In order to find a balance between the classification efficiency and
accuracy, the study chose the peak accuracy as the node to determine the number of input
variables for further classification.

4.2. Accuracy Assessment

Among all the LC products of the study sites in 2000, 2010 and 2020, the results
produced high accuracies (OA ranges from 73% to 95%). By calculating the average
producer’s accuracy (PA) it was found that the highest classification accuracy was achieved
for cropland, where PA could reach 92%, followed by the extraction accuracy for water
bodies, which reached 87%, while the extraction accuracy for grassland and bare land
were the worst with 64% and 73%, respectively (Table 4). Those two also showed the
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lowest classification accuracy. It is meaningful to note that the accuracy evaluation was
conducted with the country as the scale. A detailed classification accuracy evaluation table
and confusion matrix are available in the Appendix A.2, Tables A1–A7.

Table 4. Average producer’s accuracy (PA) of the LC classifications per category.

Type Built-Up Crop-Land Deciduous Forest Coniferous Forest Grass-Land Bare Land Water

PA 80% 92% 84% 80% 64% 73% 87%

4.3. Quantitative Analysis of LC and Its Changes

In order to understand the dynamics of LC change in each city over the past two
decades, the area of each type of LC was summarised and illustrated in Tables 5 and A2,
Tables A3–A7, and Figure 4a,b. Figure 5a–f shows the area of various LC types in different
stages. These differences in China and Europe can be described as follows:

(1) Built-up area ratio

By calculating the percentage of dense and dispersed built-up areas to total built-up
areas, we can assess the degree of built versus more natural LC in the six cities. Based on
the results for 2020, this is how the three European cities ranked in terms of share: Paris
Region (75.6%), Velika Gorica (69.2%) and Aarhus (66.9%). The three Chinese cities with
the highest share of built-up areas were Shanghai (73.2%), followed by Ningbo (69.08%),
and finally Beijing (65.2%).

(2) Spatial urbanisation processes

We compared the space covered by urbanisation processes in European and Chinese
cities in 2020, then estimated the rate, i.e., the ratio of built-up area to total city area, and
came up with the following ranking: Shanghai (40.6%), Ningbo (20.8%), Aarhus (18.1%),
Beijing (17.4%), Paris Region (15.6%), and Velika Gorica (5.2%). In addition, Chinese cities
have experienced dramatic urban expansion over the past 20 years. Specifically, the built-
up area of the three cities has grown from 4077.6 km2 to 7508.7 km2. In the two decades
between 2000 and 2020, the built-up space increased by 84%. In contrast, the built-up
area of the three European cities has been rather stable over the last two decades, with the
total area slightly increasing from 1780.5 km2 in 2000 to 1986.3 km2 in 2020, an increase of
only 11.6%.

Table 5. Area statistics of LULC in 2000, 2010 and 2020 in km2.

City Year Dense
Built-Up

Dispersed
Built-Up Crop-Land Deciduous

Forest
Coniferous

Forest Grass-Land Water
Bodies

Bare
Land

Paris Region 2000 1235.9 444.5 7013.2 2941.9 68.5 275.9 84.0 6.1
2010 1300.0 323.0 7060.1 3048.5 95.6 133.4 103.2 6.1
2020 1424.3 460.4 7101.4 2739.0 222.5 26.8 95.6 0.0

Velika Gorica 2000 6.3 16.5 129.4 132.7 0.9 38.7 2.3 0.0
2010 7.3 21.7 142.7 146.2 0.0 7.6 1.2 0.0
2020 5.1 11.9 138.7 162.4 2.5 4.1 1.9 0.0

Aarhus 2000 53.5 23.8 344.0 40.9 3.3 2.3 0.4 0.0
2010 54.3 21.7 355.4 29.2 4.9 0.1 2.6 0.0
2020 55.3 29.3 335.9 27.1 17.7 0.5 2.3 0.0

Beijing 2000 1097.2 543.7 6435.7 2007.0 1301.5 4840.2 180.1 0.0
2010 1664.8 650.3 6397.4 3755.7 475.2 3303.7 158.3 0.0
2020 2064.0 794.8 4872.4 5369.0 1131.0 1915.4 258.8 0.0

Shanghai 2000 921.3 492.3 5236.9 0.0 0.0 0.0 233.2 0.0
2010 1751.0 654.5 4083.1 71.5 1.7 34.2 287.7 0.0
2020 2045.1 747.9 3841.9 0.5 7.8 0.7 239.8 0.0

Ningbo 2000 537.8 485.3 3424.6 0.0 2974.0 1142.7 354.7 0.0
2010 828.7 427.9 3795.9 32.1 2730.2 788.5 315.8 0.0
2020 1282.9 574.0 2751.7 94.9 3975.4 17.4 222.9 0.0
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(3) Reduction of green and blue spaces in connection with urban expansion

In order to understand the characteristics of LC transformation in each city from 2000
to 2020, the study further designed an LC area transfer matrix as shown in Table 5. It shows
that the rapid urbanisation process had a direct impact on the cities’ green and blue LC. As
a direct result of the urban expansion of the Paris Region, 646.1 km2 of cropland, 50.5 km2

of deciduous forest and 10.9 km2 of grassland have been replaced by built-up areas. A
similar situation occurred in the three Chinese cities, where the urbanisation process in
Beijing and Shanghai resulted in the loss of 1950.2 km2 and 1920.3 km2 of cropland each.
As coastal cities, Shanghai and Ningbo have respectively converted 25.8 km2 and 100.5 km2

of water bodies into built-up surfaces due to human land reclamation.
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(4) Changes in agriculture

In the last two decades, cropland slightly increased in the three European cities from
7486.6 km2 to 7576.0 km2, an increase of merely 1.2%, while the total cropland in the three
Chinese cities shrank significantly from 15,097.2 km2 in 2000 to 11,466.0 km2 in 2020, a
decrease of 24%. This result indicates that the intense urbanisation process in China has
led to a great loss of agriculture.

(5) The ecological restoration effect in the selected European and Chinese cities

Although the dramatic urban expansion of the past two decades has caused damage
to most ecosystem features, at the same time some areas showed the effects of significant
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ecological restoration driven by ecological restoration policies, or what we know as the
turning green effect [65]. Specifically, in the last 20 years, 451.2 km2 of built-up areas have
been restored to green and blue LC in the three European cities and 963.0 km2 were restored
in the three Chinese cities.
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5. Discussion
5.1. Information on Urban LC in Global Thematic Products

This study aimed to analyse LC changes to understand urban growth patterns at an
intercontinental scale, as well as to provide a basis for urban ES analyses. In this analysis,
we successfully tracked urbanisation processes in a historical context by interpreting global
datasets such as GAIA [9] and GlobeLand30 [8,20]. Each global dataset underlies different
specifications and shows the variety in their individual categorical qualities. Each dataset
follows specific goals such as mapping the artificial impervious land surface cover at a
global scale, or to quantify the ten most important LC categories globally. What they have
in common is that they provide insights into their specific LC categories over a long period
of time and spatial precision due to their 30-m resolution.

These thematic mapping products are valuable for global analyses and help us to
understand how and where LC changes take place, which LC patterns exist, and in which
direction loss and gain of these categories have taken place [10]. They also reveal the speed,
direction and extent at which this transformation occurs [66]. These LC maps were used
for visualisation purposes to gain an initial understanding of the problems that ecosystems
face as a consequence of urbanisation processes, and to capture how urban growth occurs
in different places.
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Harmonising all the information is a challenge, as the products cover different periods
and feature different levels of categorical and spatial detail. Urbanisation has a great
impact on ES that relate to LC, especially to differentiated vegetation cover [67]. At the
European level, highly demanding thematic mapping products have been developed that
not only provide long-term information on LC, but also serve as information platforms for
land use categories and their respective changes [16]. Although they are high quality and
cover a long period of time, their disadvantage is that they are restricted to the European
continent [18].

Regarding the Chinese cities, several thematic mapping products provide precise
information for analysing LC and correspondent ES changes at fine scale with annual
time steps [22]. We showed some lacks that hinder comparability of LC quantifications
in Chinese and European cities. This is because of the differences in their categorical
definitions and usages. In order to do justice to our targeted research, that is to use the
mapping product for further ES analysis, none of the existing products were sufficient in
terms of spatial extent or thematic resolution.

Hence, we overcame this challenge and managed to profit from both the global
information and the details from specific European and Chinese information layers which
we exploited for our distinct classification system. Another major advantage of the thematic
mapping products was that we extracted all the information, layers, and categories in
order to collect detailed sample points which we then used to build the map model and
validate the mapping results. We take into account the inherent inaccuracies of the reference
products and are aware of the potential error propagation.

5.2. Integrated Mapping Model for Relevant Urban LC Categories Tailored towards ES
Feature Allocation

By using existing LC products to integrate and extract classification sample points,
we could solve the problem of their difficult acquisition that was depicted in previous
studies [68]). As a novelty, we propose an algorithm for automatic sample points’ ac-
quisition. This method of classification feature screening can now be applied to other
studies. By evaluating and screening multiple feature variables with the help of GINI
coefficients on model evaluation, we obtained a balance of good classification accuracy as
well as a high classification efficiency. We achieved this discerning classification scheme
at the intercontinental level. However, we understand the restriction of our approach. As
dominant artificial and natural features and thus LC may vary over different countries and
cultures, they might not be represented optimally by our categories.

Our methodology ideally exploits all the spatial LC information, and therefore we
were able to design a well-developed mapping procedure. With our elaborated GEE
workflow, no additional infrastructure is needed. Our processing is easily reproducible in
other cities contrasting other approaches [69]. The performance revealed that our design
is scalable while it simultaneously only uses a viable computational time. There are no
existing products for both China and Europe in the past decades showing this level of
detail which we now present, especially regarding the differentiations in vegetation cover
(grassland and cropland, and different types of forests). Our study conceptualised a set
of automated land classification processes based on the GEE platform and geospatial big
data. It is important to discuss the challenges involved in mapping LC categories at urban
scale in great detail. The value of precise knowledge about ecosystems in the urbanised
environment is important for gaining a deeper understanding of environmental pressures
at the urban scale in a global context. Our results contribute to a better capture of LC and
our approach maximises the integrated efficiency of the relevant calculations. Furthermore,
the extraction of different densities in the urbanisation processes can now be tackled at
intercontinental scale. In the course of urbanisation, it is of little surprise that our results
show a substantial growth in artificial surfaces that subsequently caused reductions in
cultivated land. We are able to quantify the loss of vegetation at the scale of the urban area.
That makes it possible to monitor the direction of changes and variations of this decline at
a higher level of differentiation. Another important contribution is the successful spectral
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separability of forest areas. Deciduous forests store more carbon than coniferous forests, so
the spectral separability of forest is essential [70].

6. Conclusions

It is worth investigating the definitions and criteria of existing thematic mapping
systems in order to take full advantage of their capabilities when pulling information
together and extracting the appropriate data for one’s own research.

Our approach demonstrates that a requisite number of thematic classes can be derived
for the mapping of specific LC categories that relate to the allocation of ES. We conclude
that for reproduction purposes, a good balance between the necessary computational
resources and the number of indices in use is as essential as deploying ground truth
information to guarantee high quality products. Yet, there is growing imbalance between
the increasing amount of satellite images and ground observations [70]. It is a challenge
to gather a plentiful of samples for training and validation across continents. We hence
illustrate the potential of samples collection from existing local and continental databases.
We argue to keep collating ground truthing information in the light of global satellite image
programs. Paying tribute to the high heterogeneity of urban areas, the more recent Sentinel
data products that have been available since 2016 provide timely and continuous satellite
images for LC monitoring. For less historical change detection research, the Sentinel series
support mapping and monitoring at higher resolution than the Landsat series [71,72].

In order to improve the universality and model accuracy of this research method, the
following aspects can be optimised in future research: First, more land-cover products as
well as citizen science datasets (such as Open Street Map, OSM) can be further considered
as the source of samples collection. Second, change detection methods can be employed as
ways to expand the year for samples collection. Last, the accuracy evaluation system of
sample points needs to be further constructed. We can, for example, use the purity and
connectivity of LC to evaluate the reliability of sample points, or combine multiple product
voting systems to improve the reliability of sample points, to build a higher accuracy
classification model.

This level of mapping detail in urban LC facilitates for the next stage of scientific anal-
ysis to quantify the benefits and losses of related ES features. Furthermore, the outcomes
of this study may also help to assess the changes in ES at an intercontinental scale, and
to support the recognition of ES’s benefits and co-benefits for a more sustainable urban
growth. This will be the object of research in part 2. Hence, our next task will be to estimate
the equity in ES provision for this study area by further investigating the quantified spatial
patterns of the diverse urbanisation processes.
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Figure A1. (a–f) Visualising the dynamic urban LC expansion of the study area by means of the thematic GAIA product. 
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Figure A1. (a–f) Visualising the dynamic urban LC expansion of the study area by means of the thematic GAIA product.

Appendix A.2

Table A1. Accuracy assessment of land cover classes in six cities (OA: overall accuracy; PA: producer’s accuracy).

2000 in China

Code Urban Cropland Deciduous
Forest

Coniferous
Forest Grass-Land Bare Land Water

1 Urban 488 150 0 0 1 0 0
2 Cropland 59 1940 0 23 34 0 7
3 Deciduous 0 0 63 19 5 0 0
4 Coniferous 0 14 11 201 10 0 0
5 Grassland 7 88 7 14 182 0 1
6 Bare land 0 0 0 0 0 1 0
7 Water 2 31 0 0 0 0 137

PA 0.76 0.94 0.72 0.85 0.61 1 0.81
OA 0.86

Kappa 0.76
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Table A1. Cont.

2010 in China

Code Urban Cropland Deciduous
Forest

Coniferous
Forest Grass-Land Bare Land Water

1 Urban 625 234 0 0 1 0 1
2 Cropland 198 1185 3 9 65 0 8
3 Deciduous 0 10 144 6 6 0 0
4 Coniferous 0 25 19 82 18 0 0
5 Grassland 14 145 10 7 135 0 0
6 Bare land 0 0 0 0 0 0 0
7 Water 5 31 0 2 0 0 130

PA 0.74 0.73 0.82 0.77 0.60 0 0.94
OA 0.73

Kappa 0.61

2020 in China

Code Urban Cropland Deciduous
Forest

Coniferous
Forest Grass-Land Bare Land Water

1 Urban 234 39 0 0 0 0 0
2 Cropland 33 480 0 3 3 0 2
3 Deciduous 0 3 188 18 17 0 0
4 Coniferous 0 6 14 182 0 0 0
5 Grassland 1 23 28 2 145 0 0
6 Bare land 1 0 0 0 0 0 0
7 Water 0 2 0 0 0 0 40

PA 0.86 0.92 0.83 0.90 0.72 0 0.95
OA 0.87

Kappa 0.83

2000 in Europe

Code Urban Cropland Deciduous
Forest

Coniferous
Forest Grass-Land Bare Land Water

1 Urban 242 77 18 0 5 0 1
2 Cropland 34 3196 62 1 31 0 2
3 Deciduous 3 92 1184 4 8 0 0
4 Coniferous 1 9 23 64 1 0 0
5 Grassland 5 96 40 2 218 0 0
6 Bare land 2 2 1 0 0 4 0
7 Water 3 2 4 0 1 0 30

PA 0.71 0.96 0.92 0.65 0.60 0.44 0.75
OA 0.9

Kappa 0.82

2010 in Europe

Code Urban Cropland Deciduous
Forest

Coniferous
Forest Grass-Land Bare Land Water

1 Urban 160 12 16 1 1 114 11
2 Cropland 13 1539 53 1 11 186 14
3 Deciduous 0 0 522 4 6 33 24
4 Coniferous 0 0 19 60 0 0 2
5 Grassland 0 0 16 0 71 27 2
6 Bare land 0 0 29 2 18 1265 27
7 Water 0 0 36 2 2 45 698

PA 0.92 0.99 0.76 0.86 0.65 0.76 0.90
OA 0.86

Kappa 0.97



Remote Sens. 2021, 13, 1744 28 of 32

Table A1. Cont.

2020 in Europe

Code Urban Cropland Deciduous
Forest

Coniferous
Forest Grass-Land Bare Land Water

1 Urban 459 83 0 2 0 0 0
2 Cropland 35 5443 62 5 21 0 0
3 Deciduous 0 73 2715 6 8 0 0
4 Coniferous 3 25 31 231 0 0 1
5 Grassland 1 41 25 2 171 0 1
6 Bare land 0 0 0 0 0 0 0
7 Water 0 1 0 2 3 0 44

PA 0.84 0.98 0.97 0.79 0.71 0.00 0.88
OA 0.95

Kappa 0.91

Table A2. Land cover area transfer matrix for the Paris Region from 2000 to 2020 (km2).

2000 2020 Dense
Built-Up

Dispersed
Built-Up Cropland Deciduous

Forest
Coniferous

Forest Grass-Land Bare
Land Water

Dense built-up 1699.42 38.64 115.06 6.06 10.41 2.80 0.00 3.66
Dispersed built-up 113.21 294.92 229.40 19.06 13.19 2.00 0.00 2.05

Cropland 314.96 331.17 9571.19 327.92 39.25 13.12 0.00 17.35
Deciduous forest 25.69 24.79 479.72 3719.36 187.29 9.08 0.00 6.51
Coniferous forest 0.15 0.30 2.63 19.08 80.39 0.73 0.00 0.10

Grassland 5.60 5.26 345.11 53.28 3.86 3.30 0.00 2.14
Bare land 1.78 2.01 4.52 0.19 0.09 0.21 0.00 0.43

Water bodies 1.03 0.58 1.72 0.31 1.65 9.32 0.00 112.62

Table A3. Land cover area transfer matrix for Velika Gorica from 2000 to 2020 (km2).

2000 2020 Dense
Built-Up

Dispersed
Built-Up Cropland Deciduous

Forest
Coniferous

Forest Grass-Land Bare
Land Water

Dense built-up 5.71 1.44 1.82 0.06 0.00 0.00 0.00 0.00
Dispersed built-up 0.41 9.72 12.89 0.28 0.10 0.05 0.00 0.22

Cropland 0.99 5.13 147.37 29.06 0.99 1.55 0.00 0.09
Deciduous forest 0.08 0.19 6.22 180.39 1.49 1.41 0.00 0.03
Coniferous forest 0.00 0.00 0.07 0.73 0.40 0.00 0.00 0.02

Grassland 0.13 0.48 30.08 21.71 0.08 2.90 0.00 0.02
Bare land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water bodies 0.00 0.07 0.18 0.05 0.53 0.00 0.00 2.41

Table A4. Land cover area transfer matrix for Aarhus from 2000 to 2020 (km2).

2000 2020 Dense
Built-Up

Dispersed
Built-Up Cropland Deciduous

Forest
Coniferous

forest Grass-Land Bare
Land Water

Dense built-up 75.07 5.64 13.59 0.19 1.29 0.00 0.00 0.12
Dispersed built-up 6.18 19.53 15.75 0.32 0.78 0.00 0.00 0.06

Cropland 17.31 26.22 532.20 19.97 16.94 0.71 0.00 2.80
Deciduous forest 0.40 0.82 35.23 26.79 9.06 0.19 0.00 0.69
Coniferous forest 0.00 0.01 1.43 1.11 3.24 0.00 0.00 0.12

Grassland 0.08 0.19 3.45 0.21 0.25 0.02 0.00 0.01
Bare land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water bodies 0.09 0.12 0.04 0.00 0.18 0.00 0.00 0.25
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Table A5. Land cover area transfer matrix for Beijing from 2000 to 2020 (km2).

2000 2020 Dense
Built-Up

Dispersed
Built-Up Cropland Deciduous

Forest
Coniferous

Forest Grass-Land Bare
Land Water

Dense built-up 1171.92 37.72 208.38 0.28 0.38 2.22 0.00 11.71
Dispersed built-up 343.15 172.85 172.04 1.42 0.38 9.42 0.00 11.34

Cropland 1170.53 779.66 5617.81 329.94 72.88 343.97 0.00 100.77
Deciduous forest 0.04 0.90 3.45 1926.02 620.08 88.64 0.00 0.02
Coniferous forest 0.26 2.65 5.61 994.49 591.53 106.58 0.00 5.23

Grassland 5.78 41.58 349.35 3798.65 200.38 1957.70 0.00 4.49
Bare land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water bodies 3.97 3.85 15.54 2.08 0.38 4.43 0.00 206.39

Table A6. Land cover area transfer matrix for Shanghai from 2000 to 2020 (km2).

2000 2020 Dense
Built-Up

Dispersed
Built-Up Cropland Deciduous

Forest
Coniferous

Forest Grass-Land Bare
Land Water

Dense built-up 930.52 14.99 129.63 0.09 0.66 0.22 0.00 4.20
Dispersed built-up 253.45 129.26 190.34 0.01 0.15 0.04 0.00 4.01

Cropland 1198.69 721.62 4096.34 0.37 8.09 0.56 0.00 116.01
Deciduous forest 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Coniferous forest 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Grassland 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bare land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water bodies 14.75 11.08 90.26 0.06 0.26 0.04 0.00 157.02

Table A7. Land cover area transfer matrix for Ningbo from 2000 to 2020 (km2).

2000 2020 Dense
Built-Up

Dispersed
Built-Up Cropland Deciduous

Forest
Coniferous

Forest Grass-Land Bare
Land Water

Dense built-up 544.37 16.66 52.20 0.01 0.64 0.19 0.00 7.88
Dispersed built-up 201.04 204.86 139.36 0.4 2.92 3.91 0.00 8.62

Cropland 672.18 372.79 2473.82 29.8 352.87 6.38 0.00 52.24
Deciduous forest 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Coniferous forest 5.35 16.84 167.62 32.7 3202.4 5.63 0.00 2.19

Grassland 2.49 11.00 235.83 45.39 1019 3.50 0.00 1.46
Bare land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water bodies 59.20 41.49 111.98 1.42 10.20 0.46 0.00 185.3

All accuracy assessments are calculated using ArcGIS 10.8.
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